Sound intensity is inversely proportional to the square of the distance between the source and the receiver.
That is
I = k/r^2
where
k = constant
r = radius
When r=1, the intensity is I₁ = k/1 = k
When r=3, the intensity I₂ = k/3² = k/9
Therefore
I₂ = I₁ /9
In decibels,
I = 10 log₁₀(I/I₀)
where I₀ = reference intensity
When r=1,
10 log₁₀ (I₁/I₀) = 270
When r =3,
10 log₁₀ (I₂/I₀) = 10 log₁₀ [(I₂/I₁)*(I₁/I₀)]
= 10 log₁₀ [(1/9)*(I₁/I₀)]
= 10 log₁₀(1/9) + 270
= 260.5
Answer: 260.5 dB (nearest tenth)
It depends on how close you get to it. Remember that its gravity decreases as you get farther from it.
The relationship between object distance, image distance, and focal length of a spherical mirror is given by
1/f=1/v+1/u
Where
f= focal length of a spherical mirror (distance between the pole and the principal focus of the mirror)
u= object distance (distance between pole and object)
v= image distance (the distance between pole and image)
Ek = 1/2 mv^2
If they are travelling at the same speed the one with the larger mass will have more kinetic energy as kinetic energy and mass are proportional.