Answer:
An apple, potato, and onion all taste the same if you eat them with your nose plugged
Explanation:
There are mistakes in the question.The correct question is here
A 2.0 kg, 20-cm-diameter turntable rotates at 100 rpm on frictionless bearings. Two 500 g blocks fall from above, hit the turntable simultaneously at opposite ends of a diameter, and stick. What is the turntable’s angular velocity, in rpm, just after this event?
Answer:
w=50 rpm
Explanation:
Given data
The mass turntable M=2kg
Diameter of the turntable d=20 cm=0.2 m
Angular velocity ω=100 rpm= 100×(2π/60) =10.47 rad/s
Two blocks Mass m=500 g=0.5 kg
To find
Turntable angular velocity
Solution
We can find the angular velocity of the turntable as follow
Lets consider turntable to be disk shape and the blocks to be small as compared to turntable

where I is moment of inertia

The tension in the supporting cable when the cab originally moves downward is 18422.4 N
What is tension?
Tension is described as the pulling force by the means of a three-dimensional object.
Tension might also be described as the action-reaction pair of forces acting at each end of said elements.
Here,
m =combined mass = 1600 kg
s = Displacement of the elevator = 42 m
g = Acceleration due to gravity = 9.81 m/s²
u = Initial velocity = 12 m/s
v = Final velocity = 0
According to the equation of motion:

0 - 12^2 = 2*a*42
a = - 144 / 84
a = - 1.714 m/s^2
Now let's write the equation of the forces acting on the elevator. Taking upward as positive direction:
T-mg = ma
T = m(g-a)
T = 1600 ( 9.8-(-1.74))
T=18422.4 N
Hence,
The tension in the supporting cable when the cab, originally moving downward is 18422.4 N
Learn more about tension here:
<u>brainly.com/question/13772148</u>
#SPJ4
B. The Particles Have Less Kinetic Energy than those of..