Answer:
0.18 ; 0.1875 ; No
Step-by-step explanation:
Let:
Person making the order = P
Other person = O
Gift wrapping = w
P(p) = 0.7 ; P(O) = 0.3 ; p(w|O) = 0.60 ; P(w|P) = 0.10
What is the probability that a randomly selected order will be a gift wrapped and sent to a person other than the person making the order?
Using the relation :
P(W|O) = P(WnO) / P(O)
P(WnO) = P(W|O) * P(O)
P(WnO) = 0.60 * 0.3 = 0.18
b. What is the probability that a randomly selected order will be gift wrapped?
P(W) = P(W|O) * P(O) + P(W|P) * P(P)
P(W) = (0.60 * 0.3) + (0.1 * 0.7)
P(W) = 0.18 + 0.07
P(W) = 0.1875
c. Is gift wrapping independent of the destination of the gifts? Justify your response statistically
No.
For independent events the occurrence of A does not impact the occurrence if the other.
Answer:
140x12+105x4+55x12= 86,340 a month
Step-by-step explanation:
Answer:
idk
Step-by-step explanation:
Answer:
3x-8
Step-by-step explanation:
Answer:
<h2>y = 2</h2>
Step-by-step explanation:
To find the value of y when x = 8 we must first find the relationship between the two variables.
The statement
y varies directly with variable x is written as
y = kx
where k is the constant of proportionality
when
x = 12
y = 3
Substitute the values into the above formula and solve for k
That's
3 = 12k
Divide both sides by 12

So the formula for the variation is

when
x = 8

we have the final answer as
<h3>y = 2</h3>
Hope this helps you