Answer:
Explanation:
Threshold frequency = 4.17 x 10¹⁴ Hz .
minimum energy required = hν where h is plank's constant and ν is frequency .
E = 6.6 x 10⁻³⁴ x 4.17 x 10¹⁴
= 27.52 x 10⁻²⁰ J .
wavelength of radiation falling = 245 x 10⁻⁹ m
Energy of this radiation = hc / λ
c is velocity of light and λ is wavelength of radiation .
= 6.6 x 10⁻³⁴ x 3 x 10⁸ / 245 x 10⁻⁹
= .08081 x 10⁻¹⁷ J
= 80.81 x 10⁻²⁰ J
kinetic energy of electrons ejected = energy of falling radiation - threshold energy
= 80.81 x 10⁻²⁰ - 27.52 x 10⁻²⁰
= 53.29 x 10⁻²⁰ J .
Answer:
by a rocking chair, a bouncing ball, a vibrating tuning fork, a swing in motion, the Earth in its orbit around the Sun, and a water wave.
Explanation:
A: The battery is a store of internal energy (shown as chemical energy). The energy is transferred through the wires to the lamp, which then transfers the energy to the surroundings as light. These are the useful energy transfers - we use electric lamps to light up our rooms.
B: In the case of the light bulb the 95J of energy transferred as heat is wasted energy as it is not useful because the purpose of the device is to produce light.
SORRY I ONLY HAVE ANSWERS FOR A AND B
<span>The apartment’s explosion, reportedly caused by a gas leak, produced a violent release of gas and heat. the heat increased the temperature of the air in the room, which means an increase in the air's molecular kinetic energy.
When heat leaves a system, that energy is transferred to its surroundings. Since the air is the surroundings, the heat is transferred to the air increasing the temperature. This causes an increase in the individual air molecules' energy.</span>