Refer to the attached figure. Xp may not be between the particles but the reasoning is the same nonetheless.
At xp the electric field is the sum of both electric fields, remember that at a coordinate x for a particle placed at x' we have the electric field of a point charge (all of this on the x-axis of course):

Now At xp we have:


Which is a second order equation, using the quadratic formula to solve for xp would give us:

or

Plug the relevant values to get both answers.
Now, let's comment on which of those answers is the right answer. It happens that
BOTH are correct. This is simply explained by considring the following.
Let's place a possitive test charge on the system This charge feels a repulsive force due to q1 but an attractive force due to q2, if we place the charge somewhere to the left of q2 the attractive force of q2 will cancel the repulsive force of q1, this translates to a zero electric field at this x coordinate. The same could happen if we place the test charge at some point to the right of q1, hence we can have two possible locations in which the electric field is zero. The second image shows two possible locations for xp.
Answer:
Explanation:
Polarization In this case angle of incidence is not equal to angle of polarization, hence reflected light is partially polarized and transmitted light is also partially polarized. by reflection is explained by Brewster's law,
According to this when unpolarized light incident on glass plate at an angle is called as angle of polarizing the reflected light is plane polarized, and transmitted light is partially polarized. The plane of vibration of polarized light is having plane of vibrations perpendicular to plane of incidence.
Answer: the refraction of light by the atmosphere
Explanation: Refraction is the phenomenon in which there is a change in direction of light passing from one medium to another or from a gradual change in the medium.
Here in case of sunset, the sun rays passes through the varying density of atmosphere because of varying concentrations of dust particles.
Reflection is the phenomenon in which the light bounces back after falling on a surface.
Absorption is the phenomenon in which matter captures the electromagnetic radiations and thus the energy of photons is converted to internal energy of the system.