1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
5

What is the speed of a person that walk 400 meters in 1900 seconds

Physics
1 answer:
Nezavi [6.7K]3 years ago
6 0

Answer:

Explanation:

.

You might be interested in
A nova occurs when
eimsori [14]

C. hydrogen accreted onto a white dwarf from a close companion rapidly fuses to helium, releasing a large amount of energy.

The accreted material, composed mainly of hydrogen, is compacted on the surface of the white dwarf due to the intense gravitational force on that place. As material accumulates, The white dwarf becomes increasingly hot, until it reaches the critical temperature for ignition of nuclear fusion.

5 0
3 years ago
Time dilation: A missile moves with speed 6.5-10 m/s with respect to an observer on the ground. How long will it take the missil
tatyana61 [14]

Answer:

The time taken by missile's clock is 4.6\times 10^{6} s

Solution:

As per the question:

Speed of the missile, v_{m = 6.5\times 10^{3}} m/s

Now,

If 'T' be the time of the frame at rest then the dilated time as per the question is given as:

T' = T + 1

Now, using the time dilation eqn:

T' = \frac{T}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}

\frac{T'}{T} = \frac{1}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}

\frac{T + 1}{T} = \frac{1}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}

1 + \frac{1}{T} = \frac{1}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}

1 + \frac{1}{T} = (1 + (\frac{v_{m}}{c})^{2})^{- \frac{1}{2}}         (1)

Using binomial theorem in the above eqn:

We know that:

(1 + x)^{a} = 1 + ax

Thus eqn (1) becomes:

1 + \frac{1}{T} = 1 - \frac{- 1}{2}.\frac{v_{m}^{2}}{c^{2}}

T = \frac{2c^{2}}{v_{m}^{2}}

Now, putting appropriate values in the above eqn:

T = \frac{2(3\times 10^{8})^{2}}{(6.5\times 10^{3})^{2}}

T = 4.6\times 10^{6} s

4 0
3 years ago
Which graph shows an object that is dropped?
Olegator [25]

Answer:

I'm pretty sure it's the third one where velocity goes from positive to negative

Explanation:

the positive velocity is before the object hits the ground and the negative is after

8 0
3 years ago
A soccer player kicks a ball, applying a force of 1,000 newtons over a distance of 0. 2 meter. The ball travels 50 meters down t
Fed [463]
500 i think i’m wrong though
8 0
2 years ago
The temperature of a body of water influences _____
Maslowich
The temperature of the air above it
5 0
2 years ago
Read 2 more answers
Other questions:
  • Which label identifies the statement: "Energy cannot be created or destroyed, but it can be converted or changed into different
    11·1 answer
  • In a 100 mm diameter horizontal pipe, a venturimeter of 0.5 contraction ratio has been fitted. The head of water on the meter wh
    12·1 answer
  • TheStability of atomic nuclei seems to be related to the ratio of what
    9·1 answer
  • Suppose that a passenger intent on lunch during his first ride in a hot-air balloon accidently drops an apple over the side duri
    10·1 answer
  • A monkey with 4.5 kg of mass falls while swinging from a tree 10 meters above the ground. What is its GPE while it is on the tre
    15·1 answer
  • A 75-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic field of 1.00 T directed perpendicular to th
    12·1 answer
  • The diagram shows a spectrometer being used to analyze a sample of a solution.
    11·2 answers
  • The potential difference between points A and B in an electric
    9·1 answer
  • why are we all cheating if we payed attention in what they trying to tell us we wouldn't have to cheat but we are not paying att
    9·2 answers
  • Hydrogen is a pure substance represented by the chemical symbol . Which of the following best describes hydrogen?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!