Answer:
b) 0.1 mm
Explanation:
Given that
E= 1 x 10¹⁰ N/m²
F= 4 N
d= 0.5 mm
L = 60 mm
We know that elongation due to force F given as



ΔL = 0.12 mm
Therefore the answer is -
b) 0.1 mm
Answer:
ω=v/r.
Explanation:
<em><u>angular velocity= linear velocity/radius</u></em>
Answer:
a. the force between them quadruples
Explanation:
The electrostatic force between two charges is given by

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
In this problem, the charges on both objects are doubled, so

While the distance does not change, so the new force will be

so, the force will quadruple.
I’m sure it’s called a circuit:)
Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy
