Answer:
longitudinal waves have those properties
Answer:
v₂ = 70 m / s
Explanation:
For this exercise let's use Bernoulli's equation
where subscript 1 is for the top of the mountain and subscript 2 is for Tuesday's level
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ +1/2 ρ v₂² + ρ g y₂
indicate that the pressure in the two points is the same, y₁ = 250 m, y₂ = 0 m, the water in the upper part, because it is a reservoir, is very large for which the velocity is very small, we will approximate it to 0 (v₁ = 0), we substitute
ρ g y₁ = ½ ρ v₂²
v₂ =
let's calculate
v₂ = √( 2 9.8 250)
v₂ = 70 m / s
(a) The minimum force F he must exert to get the block moving is 38.9 N.
(b) The acceleration of the block is 0.79 m/s².
<h3>
Minimum force to be applied </h3>
The minimum force F he must exert to get the block moving is calculated as follows;
Fcosθ = μ(s)Fₙ
Fcosθ = μ(s)mg
where;
- μ(s) is coefficient of static friction
- m is mass of the block
- g is acceleration due to gravity
F = [0.1(36)(9.8)] / [(cos(25)]
F = 38.9 N
<h3>Acceleration of the block</h3>
F(net) = 38.9 - (0.03 x 36 x 9.8) = 28.32
a = F(net)/m
a = 28.32/36
a = 0.79 m/s²
Thus, the minimum force F he must exert to get the block moving is 38.9 N.
The acceleration of the block is 0.79 m/s².
Learn more about minimum force here: brainly.com/question/14353320
#SPJ1
Answer:
Increases.
Explanation:
The electric potential increases when the two positive charges of same magnitude bring close to one charge to another because there is repulsive force between them due to same charge and when the two opposite charges move away from each other, the potential energy decreases. When two opposite charges are brought closer together, electric potential energy decreases while on the other hand, when we move opposite charges apart from each other than the work done against the attractive force that leads to an increase in electric potential energy.