Alkali metals: left column of your periodic table (not hydrogen, but anything below it). They have one valence electron, which they are happy to share in a reaction.
Halogens: second column from the right of your periodic table. They are one electron short of a full shell, so they are reactive in the opposite way that alkalis are--they want electrons.
Atomic number (number of protons) is the big number on the periodic table square. Hydrogen's is 1.
Atomic mass is a little number down below. For example, Hydrogen's is 1.008.
Neutrons are a tricky subject, because different isotopes of the same element can have different numbers of neutrons. You can't generally get this from the atomic mass, because the atomic mass is a weighted average of naturally occurring isotopes. Hydrogen can have 0,1, or 2 neutrons. To answer this, you'd have to choose a particular isotope from the table of isotopes (a completely different chart from the periodic table) which has a certain number of neutrons: n = weight - Z.
Valence electrons are the electrons in the outermost shell. (The column of the table).
<span>
Number of principal shells is the row of the periodic table. </span>
The average speed of the whole travel is equal to <u>400 mph</u>.
Why?
From the statement, we know that whole travel is divided into three parts. For the first part (traveling from New York to Chicago), we have that it was 3.25 hours and the covered distance was half of the total distance (1400mi). For the second part, we have that it was 1 hour (layover time), and the covered no distance. For the third part (traveling from Chicago to Los Angeles), we have that it was 2.75 hours, and it took the other half of the total distance (1400mi).
We can calculate the average speed of the whol travel using the following formula:

Now, substituting and calculating, we have:


Hence, we have the average speed of the whole travel is equal to 400 mph.
Have a nice day!
I think it’s C. Stroke if not then D
Answer:
The angle of banked curve that makes the reliance on friction unnecessary is

Explanation:
In order the car to stay on the curve without friction, the net force in the direction of radius should be equal or smaller than the centripetal force. Otherwise the car could slide off the curve.
The only force in the direction of radius is the sine component of the weight of the car

The cosine component is equivalent to the normal force, which we will not be using since friction is unnecessary.
Newton’s Second Law states that

Also, the car is making a circular motion:

Combining the equations:

Finally the angle is

Answer:
Tectonic plate interactions are of three different basic types: Divergent boundaries are areas where plates move away from each other, forming either mid-oceanic ridges or rift valleys. These are also known as constructive boundaries. Convergent boundaries are areas where plates move toward each other and collide.
Explanation:
Meaning the answer to your question is depending on what type of tectonic plate interaction is occurring will depend on how the plates interact.