Answer:
The correct answer is: 360.
Explanation:
First we can express 120 as follows:
2 * 2 * 2 * 3 * 5 = 120
You can get the above multiples as follows:
120/2 = 60
60/2 =30
30/2 = 15
15/3 = 5 (Since 15 cannot be divisible by 2, so we move to the next number)
5/5 = 1
Take all the terms in the denominator for 120, you would get: 2 * 2 * 2 * 3 * 5 --- (1)
Second we can express 360 as follows:
360/2 = 180
180/2 = 90
90/2 =45
45/3 = 15 (Since 45 cannot be divisible by 2, so we move to the next number)
15/3 = 5
5/5 = 1
Take all the terms in the denominator for 360, you would get: 2 * 2 * 2 * 3 * 3 * 5 --- (2)
Now in (1) and (2) consider the common terms once and multiple that with the remaining:
2*2*2*3*5 = Common between the two
3 = Remaining
Hence (2*2*2*3*5) * (3) = 360 = LCM (answer)
I think that the answer is A.
P(t)=500(1+4t/(50+t^2 ))
P'(t) = 500 [(50+t^2).4 - 4t.2t]/(50+t^2)^2
by the quotient rule
500 (-4t^2 + 200)/(t^2 + 50)^2
Hence
P'(2) = 500 . (-16 + 200)/54^2 ~= 31.6
Answer:
<h2>n = 8</h2>
Step-by-step explanation:
Given the nth term of an arithmetic sequence to be Tn = a+(n-1)d
a = first term of the sequence
n = number of terms
d = common difference.
Given the first element a = 2 and 22nd to be 14
T22 = a+(22-1)d = 14
a+21d = 14
Substtuting a = 2 into the equation to get d
2+21d = 14
21d = 12
d = 12/21
d = 4/7
The nth term of the sequence given a = 2 and d = 4/7 will be expressed as;
Tn = 2+(n-1)4/7
Given Tn = 6
6 = 2+(n-1)4/7
6 = 2+4/7 n - 4/7
6-2+4/7 = 4/7 n
32/7=4/7 n
32 = 4n
n = 32/4
n = 8
Answer:
its 100
Step-by-step explanation: