<span>sound waves is an example of mechanical waves</span>
Answer:
energy = 391.902 kJ /mol
Explanation:
given data
wavelength = 305 nm = 305 ×
m
to find out
average energy
solution
we know speed of light is 3 ×
m/s
so we find frequency here first by speed of light formyla
speed = wavelength × frequency
3 ×
= 305 ×
× frequency
frequency = 9.8360 ×
so energy is
energy = hf
here h = 6.62 ×
J-s
so
energy = 6.62 ×
× 9.8360 ×
energy = 6.51 ×
J
so
energy = 6.51 ×
×
kJ/mol
energy = 391.902 kJ /mol
The magnitude of the second charge given that the first is –6×10¯⁶ C and is located 0.05 m away is +3.0×10¯⁶ C
<h3>Coulomb's law equation </h3>
F = Kq₁q₂ / r²
Where
- F is the force of attraction
- K is the electrical constant
- q₁ and q₂ are two point charges
- r is the distance apart
<h3>How to determine the second charge </h3>
- Charge 1 (q₁) = –6×10¯⁶ C
- Electric constant (K) = 9×10⁹ Nm²/C²
- Distance apart (r) = 0.05 m
- Force (F) = 65 N
F = Kq₁q₂ / r²
Cross multiply
Fr² = Kq₁q₂
Divide both side by Kq₁
q₂ = Fr² / Kq₁
q₂ = (65 × 0.05²) / (9×10⁹ × 6×10¯⁶)
q₂ = +3.0×10¯⁶ C (since the force is attractive)
Learn more about Coulomb's law:
brainly.com/question/506926
The star is FARTHER from Earth than the limit of our ability to measure parallax.
The NEAREST star outside the solar system has a parallax angle of 0.742 SECOND. That's like 0.000206 of a degree ! ALL other stars have SMALLER parallax.
I have no idea how they measure angles like these ... especially when the change in direction takes six months to happen !