Explanation:
1. To graphically add vectors, use the tail-to-tip method. Draw the first vector (it doesn't matter which), then draw the second vector where the first vector ends. The resultant vector is from the tail of the first vector to the tip of the second vector.
This graph shows two ways to get the resultant: A + B or B + A.
desmos.com/calculator/bqhcclhhqc
2. To algebraically add vectors, split each vector into x and y components.
Aₓ = 5.0 cos 45 = 3.5
Aᵧ = 5.0 sin 45 = 3.5
Bₓ = 2.0 cos 180 = -2.0
Bᵧ = 5.0 sin 180 = 0
The components of the resultant vector are the sums of the components of A and B.
Cₓ = 3.5 + -2.0 = 1.5
Cᵧ = 3.5 + 0 = 3.5
The magnitude of the resultant vector is found with Pythagorean theorem, and the direction is found with tangent.
C = √(Cₓ² + Cᵧ²) ≈ 3.9 m/s
θ = atan(Cᵧ / Cₓ) ≈ 67°
I believe your answer would be D- Physical properties of matter effect the chemical properties of matter.
Hope this helps. Tell me if I'm right.
2ω is the resistance of the second wire if the resistance of the first is 4ω if two wires have the same length, but the second has twice the diameter of the first.
R= 4ω.
R = ρl/A
2d=r
R2=2ω
Resistance is the capacity of a conductor to obstruct the passage of an electric current through it. It is controlled by the interaction of the applied voltage and the electric current passing through it.
Conductors have very little resistance, whereas insulators have a significant amount of resistance. The resistance increases as the current flow decreases. Resistance is influenced by the properties and dimensions of the material (area of cross section)
To know more about resistance visit : brainly.com/question/14547003
#SPJ4
Answer:
m = 45 kg
Explanation:
Given that,
Mass of Jadan, m = 45 kg on Earth
Jupiter has more gravity than the Earth.
Mass of an object is the amount of matter contained inside an object. We need to tell about the mass of Jaden on Jupiter. The mass of the object remains same everywhere.It does not change in any of the location.
Hence, Jaden's mass will be 45 kg on Jupiter.