Answer:
Option C. 10 square inch
Step-by-step explanation:
Net of a prism is shown on the coordinate plane. We have to calculate the surface area of the prism.
To calculate the surface area of the net we will calculate the area of the four large rectangles and two squares given in the picture.
Total surface area of the net = 2× small squares + 4×large rectangles
= 2×(1×1) + 4×(1×2) = 2 + 8 = 10 square inch.
Therefore option C. 10 square inch is the answer.
165% , is your answer.
41 divided by 25 is 1.65 times 100.
Answer:
We have the matrix ![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%268%264%5Cend%7Barray%7D%5Cright%5D)
To find the eigenvalues of A we need find the zeros of the polynomial characteristic 
Then
![p(\lambda)=det(\left[\begin{array}{ccc}-4-\lambda&-4&-4\\0&-8-\lambda&-4\\0&8&4-\lambda\end{array}\right] )\\=(-4-\lambda)det(\left[\begin{array}{cc}-8-\lambda&-4\\8&4-\lambda\end{array}\right] )\\=(-4-\lambda)((-8-\lambda)(4-\lambda)+32)\\=-\lambda^3-8\lambda^2-16\lambda](https://tex.z-dn.net/?f=p%28%5Clambda%29%3Ddet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4-%5Clambda%26-4%26-4%5C%5C0%26-8-%5Clambda%26-4%5C%5C0%268%264-%5Clambda%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%3D%28-4-%5Clambda%29det%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-8-%5Clambda%26-4%5C%5C8%264-%5Clambda%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%3D%28-4-%5Clambda%29%28%28-8-%5Clambda%29%284-%5Clambda%29%2B32%29%5C%5C%3D-%5Clambda%5E3-8%5Clambda%5E2-16%5Clambda)
Now, we fin the zeros of
.

Then, the eigenvalues of A are
of multiplicity 1 and
of multiplicity 2.
Let's find the eigenspaces of A. For
:
.Then, we use row operations to find the echelon form of the matrix
![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]\rightarrow\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%268%264%5Cend%7Barray%7D%5Cright%5D%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
We use backward substitution and we obtain
1.

2.

Therefore,

For
:
.Then, we use row operations to find the echelon form of the matrix
![A+4I_3=\left[\begin{array}{ccc}0&-4&-4\\0&-4&-4\\0&8&8\end{array}\right] \rightarrow\left[\begin{array}{ccc}0&-4&-4\\0&0&0\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%2B4I_3%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-4%26-4%5C%5C0%26-4%26-4%5C%5C0%268%268%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-4%26-4%5C%5C0%260%260%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
We use backward substitution and we obtain
1.

Then,

For a. 55greater than equal to X less than equal to 80
The first step for finding out whether or not this expression is equivalent to

is to reduce the fraction with

. You can begin to do this by dividing the terms with the same base by subtracting their exponents.

Subtract the exponents.

Now reduce the fraction with

by doing the same process. Since I just showed you how to do this,, I will skip over this.

Since we cannot simplify this expression any further,, your answer is going to be

,, which is not equivalent to

.
Let me know if you have any further questions.
:)