Answer:However, unlike the outer core, the inner core is not liquid or even molten. The inner core's intense pressure—the entire rest of the planet and its atmosphere—prevents the iron from melting. The pressure and density are simply too great for the iron atoms to move into a liquid state.
Explanation:please give brainliest
Answer:
Head loss in turbulent flow is varying as square of velocity.
Explanation:
As we know that head loss in turbulent flow given as

Where
F is the friction factor.
L is the length of pipe
V is the flow velocity
D is the diameter of pipe.
So from above equation we can say that

It means that head loss in turbulent flow is varying as square of velocity.
We know that loss in flow are of two types
1.Major loss :Due to surface property of pipe
2.Minor loss :Due to change in momentum of fluid.
Answer:
Option A
Explanation:
They are portable resources that convert chemical energy to electrical energy
Answer:
333.7 g.
Explanation:
- The depression in freezing point of water (ΔTf) due to adding a solute to it is given by: <em>ΔTf = Kf.m.</em>
Where, ΔTf is the depression in water freezing point (ΔTf = 20.0°C).
Kf is the molal freezing point depression constant of the solvent (Kf = 1.86 °C/m).
m is the molality of the solution.
<em>∴ m = ΔTf/Kf</em> = (20.0°C)/(1.86 °C/m) = <em>10.75 m.</em>
molaity (m) is the no. of moles of solute per kg of the solvent.
∵ m = (no. of moles of antifreeze C₂H₄(OH)₂)/(mass of water (kg))
∴ no. of moles of antifreeze C₂H₄(OH)₂ = (m)(mass of water (kg)) = (10.75 m)(0.5 kg) = 5.376 mol.
∵ no. of moles = mass/molar mass.
<em>∴ mass of antifreeze C₂H₄(OH)₂ = no. of moles x molar mass </em>= (5.376 mol)(62.07 g/mol) =<em> 333.7 g.</em>
Most of them explode is the answer to that question