Answer:
ΔH for formation of 197g Fe⁰ = 1.503 x 10³ Kj => Answer choice 'B'
Explanation:
Given Fe₂O₃(s) + 2Al⁰(s) => Al₂O₃(s) + 2Fe⁰(s) + 852Kj
197g Fe⁰ = (197g/55.85g/mol) = 3.527 mol Fe⁰(s)
From balanced standard equation 2 moles Fe⁰(s) => 852Kj, then ...
3.527 mole yield (a higher mole value) => (3.527/2) x 852Kj = 1,503Kj (a higher enthalpy value).
______
NOTE => If 2 moles Fe gives 852Kj (exo) as specified in equation, then a <u>higher energy value</u> would result if the moles of Fe⁰(s) is <u>higher than 2 moles</u>. The ratio of 3.638/2 will increase the listed equation heat value to a larger number because 197g Fe⁰(s) contains more than 2 moles of Fe⁰(s) => 3.527 mole Fe(s) in 197g. Had the problem asked for the heat loss from <u>less than two moles Fe⁰(s)</u> - say 100g Fe⁰(s) (=1.79mole Fe⁰(s)) - then one would use the fractional ratio (1.79/2) to reduce the enthalpy value less than 852Kj.
The first thing we need to do here is to recognize the unit of molarity and the units of the given percentage of nitric acid.
Molarity is mol HNO3 / L of solution. This is our aim
The given percentage is 0.68 g HNO3/ g solution
multiplying this with density to convert g solution into mL solution and dividing with the molecular weight of HNO3 (63 g/mol) to convert g HNO3 to mol. Therefore we obtain
0.016 mol/ mL or 16.23 mol/ L (M)
Answer: 2.78 moles of molecular oxygen will occupy 62.22 liters.
Explanation:
Answer:
The higher concentrations of greenhouse gases—and carbon dioxide in particular—is causing extra heat to be trapped and global temperatures to rise.