Coulomb interaction is responsible
Answer:
Explanation:
T₁ = 700 + 273 = 973 k
T₂ = 330 + 273 = 603 k
Theoretical efficiency = T₁ - T₂ / T₁
= (973 - 603) / 973
= .38 OR 38%
Operating efficiency = .79 x 38
= 30.02 %
Heat input Q₁ , Heat output to sink Q₂ , conversion into power = Q₁ - Q₂
given Q₁ - Q₂ = 1.3 x 10⁹ W
efficiency = Q₁ - Q₂ / Q₁
Q₁ - Q₂ / Q₁ = 30.02 / 100
100Q₁ - 100Q₂ = 30.02Q₁
69.98 Q₁ = 100Q₂
Q₁ = 1.429 Q₂
Putting this in the relation
Q₁ - Q₂ = 1.3 x 10⁹ W
1.429Q₂ - Q₂ = 1.3 x 10⁹ W
.429Q₂ = 1.3 x 10⁹
Q₂ = 3.03 x 10⁹W
= 3.03 GW.
<span>a = ΔV/Δt = (5000-10000)/60 = -500/6 = -83.(3) m/sec^2</span>
Thay are on high towers because if it was below how would the water flow. Putting it on high towers gives you an advantage of the gravity with means you got free pressure without having to use a pump.
<span>Water pressure = Height * density * gravity</span>