Answer
given,
L(t) = 10 - 3.5 t
mass of particle = 2 Kg
radius of the circle = 3.1 m
a) torque
τ = 
τ = 
τ = -3.5 N.m
Particle rotates clockwise as i look down the plane. Hence, its angular velocity is downward.
L decreases the angular acceleration upward. so, net torque is upward.
b) Moment of inertia of the particle
I = m R^2
I = 2 x 3.1²
I = 19.22 kg.m²
L = I ω
ω = 
ω = 
ω = 
A = 0.52 rad/s B = -0.182 rad/s²
Explanation:
Initial speed of the rocket, u = 0
Acceleration of the rocket, 
Time taken, t = 3.39 s
Let v is the final velocity of the rocket when it runs out of fuels. Using the equation of kinematics as :

Let x is the initial position of the rocket. Using third equation of kinematics as :


Let
is the position at the maximum height. Again using equation of motion as :

Now
and v and u will interchange



x = 524.14 meters
Hence, this is the required solution.

EQUATOR IS THE LINE THAT DIVIDES EARTH INTO TWO HEMISPHERES .