Answer:
6,600N
Explanation:
According to second law of motion, Force = mass × acceleration
If acceleration = change in velocity/time = 15/0.10
Acceleration = 150m/s²
Given mass = 44kg
Force = 44× 150
Force = 6,600N
Magnitude of the average force exerted on the passenger during this time is 6,600N
Answer:
Explanation:
Given a particle of mass
M = 1.7 × 10^-3 kg
Given a potential as a function of x
U(x) = -17 J Cos[x/0.35 m]
U(x) = -17 Cos(x/0.35)
Angular frequency at x = 0
Let find the force at x = 0
F = dU/dx
F = -17 × -Sin(x/0.35) / 0.35
F = 48.57 Sin(x/0.35)
At x = 0
Sin(0) =0
Then,
F = 0 N
So, from hooke's law
F = -kx
Then,
0 = -kx
This shows that k = 0
Then, angular frequency can be calculated using
ω = √(k/m)
So, since k = 0 at x = 0
Then,
ω = √0/m
ω = √0
ω = 0 rad/s
So, the angular frequency is 0 rad/s
Answer:
t = 120.5 nm
Explanation:
given,
refractive index of the oil = 1.4
wavelength of the red light = 675 nm
minimum thickness of film = ?
formula used for the constructive interference

where n is the refractive index of oil
t is thickness of film
for minimum thickness
m = 0


t = 120.5 nm
hence, the thickness of the oil is t = 120.5 nm
Long straight distance that a person can swim is 5.64 m.
<h3>What is the
Long straight distance?</h3>
The line that runs form one end of the circle to another is called the diameter of the circle. The pool is a circle according to the question and the long straight distance that a person can swim is the same of the diameter of the circular pool.
Now we have;
A = πr^2
A = area of pool
r = radius of pool
r = √A/ π
r = √25/3.142
r = 2.82m
Diameter of the circular pool = 2 r = 2 (2.82 cm) = 5.64 m
Learn more about circle: brainly.com/question/11833983
#SPJ1
Missing parts;
An ad for an above-ground pool states that it is 25 m2. From the ad, you can tell that the pool is a circle. If you swim from one point at the edge of the pool to another, along a straight line, what is the longest distance d you can swim? Express your answer in three significant figures.
Answer:
a)
, b)
, c) 
Explanation:
a) The capacitance of two parallel plates capacitor with dielectric is given by the following expression:

Where:
- Dielectric constant.
- Vaccum permitivity.
- Plate area.
- Distance between plates.
Hence, the capacitance of the system is:



b) The charge can be found by using the definition of capacitance:




c) The energy stored in the charged capacitor is:



