To add vectors we can use the head to tail method (Figure 1).
Place the tail of one vector at the tip of the other vector.
Draw an arrow from the tail of the first vector to the tip of the second vector. This new vector is the sum of the first two vectors.
Kinetic energy of golf club = 65J,
kinetic energy supplied to golf ball = 20% of 65 = 0.2 * 65 = 13J,
kinetic energy of ball = [mass * Velocity²]/2,
mass = 46gm = 0.046Kg,
[0.046 * V²]/2 = 13, or 0.046 *V² = 26,
V² = 26/0.046 = 565.22,
V = 23.77 m/sec = initial velocity of golf ball after hitting.
Answer:
10.21 N
Explanation:
As the force is a vector, it can be decomposed in two components perpendicular each other, so there is no projection of one component in the direction of the other.
When divided in this way, the magnitude of the resultant vector can be found simply applying trigonometry, as follows:
F² = Fx² + Fy² ⇒ F = √(Fx)²+(Fy)²
Replacing by Fx= 5.17 N and Fy = 8.8 N, we get:
F = √(5.17)²+(8.8)² =10.21 N
Answer:
Part a)
Part b)
Explanation:
Part a)
As we know that electric field intensity due to some given charge distribution is given as
now electric flux through a spherical surface of radius r is given as
now by Guass law we know that
now volume charge density is given as
Part b)
Total charge inside the radius R is given as