Answer:
Step-by-step explanation:
// Build on Thu Oct 20 21:06:21 CEST 2011 for language "en"
myHostname = window.location.hostname;
var myTLD = "." + myHostname.substring(myHostname.indexOf("wupload") + "wupload.".length).split(".")[0];
function afterLoad() {
return
}
ieFixForFileSelectionOnChangeEventTimer = null;
function ieFixForFileSelectionOnChangeEvent(a) {
$("#siteName").toggle();
if ($("#inputFileSelection").val() == "") {
ieFixForFileSelectionOnChangeEventTimer = setTimeout("ieFixForFileSelectionOnChangeEvent()", 200)
} else {
$("body")[0].focus()
}
}
function urlencode(a) {
return escape(a.toString().replace(/%/g, "%25").replace(/\+/g, "%2B")).replace(/%25/g, "%")
}
Answer:
12
Step-by-step explanation:
This can be solved by working backwards.
7 is one more than half the number of invitations.
Subtract 1. 6 is half the number of invitations.
Double.
12 is the full number of invitations.
Algebra (if you must!):
x = number of invitations
x/2 + 1 = 7
Subtract 1.
x/2 = 6
Multiply by 2.
x = 12
-4,5. 4,5 that would be the answer it's like the oppiste
Answer:
1296√3 cubic units
Step-by-step explanation:
The volume of the prism will be the product of its base area and its height. Since it circumscribes a sphere with diameter 12, that is the height of the prism.
The central cross section of the sphere is a circle of radius 6, and that will be the size of the incircle of the base. That is, the base will have an altitude of 3 times that incircle radius, and an edge length of 2√3 times that incircle radius. Hence the area of the triangular base is ...
B = (1/2)(6×2√3)(6×3) = 108√3 . . . . . square units
The volume of the prism is then ...
V = Bh = (108√3)(12) = 1296√3 . . . cubic units
_____
<em>Comment on the geometry</em>
The centroid of an equilateral triangle is also the incenter and the circumcenter. The distance of that center from any edge of the triangle is 1/3 the height of the triangle. So, for an inradius of 6, the triangle height is 3×6 = 18. The side length of an equilateral triangle is 2/√3 times the altitude, so is 12√3 units for this triangle.