Answer:
Step-by-step explanation:
The measure of the floor of the rectangular room that is 12 feet by 15 feet. The formula for determining the area of a rectangle is expressed as
Area = length × width
Area of the rectangular room would be
12 × 15 = 180 feet²
The tiles are square with side lengths 1 1/3 feet. Converting 1 1/3 feet to improper fraction, it becomes 4/3 feet
Area if each tile is
4/3 × 4/3 = 16/9 ft²
The number of tiles needed to cover the entire floor is
180/(16/9) = 180 × 9/16
= 101.25
102 tiles would be needed because the tiles must be whole numbers.
The cost of the ride varies by however many miles is driven, however the charging rate stays the same no matter how long the ride is. In the expression 0.20m + 2.00 , 2.00 is the constant as it stays the same, and 0.20 is the coefficient as is varies with however many miles are driven.
Answer: 
Step-by-step explanation:
Given : Sample space : n= 559
Sample proportion : 

Significance level : 
Critical value : 
Confidence level for population proportion:-

Hence, 95% confidence interval for the percentage of all auto accidents that involve teenage drivers.= 
We know:


substitute a = -3; b = 7; c = -15
Hello there!
This is a conceptual question about quadratic functions.
Remember that a solution of ANY function is where it intersects the x-axis, so if the quadratic function intersects the x-axis TWO times, this means that there are TWO real solutions.
Here's a list of things to remember that will help you out for quadratic functions...
•if a quadratic function intersects the x-axis twice, it has two real solutions.
•if a quadratic function intersects the x-axis once, it has one real solution and one imaginary solution.
•if a quadratic function intersects the x-axis zero times, it has zero deal solutions and two imaginary solutions.
Please NOTE: If you want to know how many solutions a polynomial function has, look at it's highest exponent. If it is 2, then it has 2 solutions whether they be real or imaginary. If it is 3, then it has 3 solutions.
Also, if one of the factors are the same for a polynomial function, the way it hits the x-axis changes! This is just some extra information to help you in the long run!
I hope this helps!
Best wishes :)