Answer:
B) collision is inelastic because they stick together after collision and share a common final velocity Vf
C) M1V1 + M2V2 = (M1 + M2)Vf
D) Vf = 6.33m/s
E) force = 3040N
Explanation:
Detailed explanation and calculation is shown in the image below
Answer: vf = 51 m/s
d = 112 m
Explanation: Solution attached:
To find vf we use acceleration equation:
a = vf - vi / t
Derive to find vf
vf = at + vi
Substitute the values
vf = 3.5 m/s² ( 8.0 s) + 23 m/s
= 51 m/s
To solve for distance we use
d = (∆v)² / 2a
= (51 m/s - 23 m/s )² / 2 ( 3.5 m/s²)
= (28 m/s)² / 7 m/s²
= 784 m/s / 7 m/s²
= 112 m
The kinetic energy of an object is given by:

where
K is the kinetic energy
m is the mass of the object
v is its velocity.
The comet in our problem has a mass of

and a velocity of

, so its kinetic energy is:
Answer:
a).
b).
c).
Explanation:
a).
The acceleration for definition is the derive of the velocity so:





Replacing

b).
If the pulsar will continue to decelerate at this rate, it will stop rotating at time:




c).
582 years ago to 2019
1437

I think it was Isaac Newton