1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
4 years ago
9

Calculate how much work is required to launch a spacecraft of mass mm from the surface of the earth (mass mEmE, radius RERE) and

place it in a circular low earth orbit--that is, an orbit whose altitude above the earth's surface is much less than RERE. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 kmkm, much less than RERE

Physics
2 answers:
pshichka [43]4 years ago
8 0

Question:

(a) Calculate how much work is required to launch a spacecraft of mass m from the surface of the earth (mass  mE , radius  RE ) and place it in a circular low earth orbit that is, an orbit whose altitude above the earth’s surface is much less than  RE

. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 km, much less than

RE=6370km

.)

Ignore the kinetic energy that the spacecraft has on the ground due to the earth’s rotation. (b) Calculate the minimum amount of additional work required to move the space craft from low earth orbit to a very great distance from the earth. Ignore the gravitational effects of the sun, the moon, and the other planets. (c) Justify the statement “In terms of energy, low earth orbit is halfway to the edge of the universe.”

Answer:

(a) E =  - G\frac{m\times m_E}{2\times (R_E + h)}

(b) W_{min} =  G\frac{m\times m_E}{2\times (R_E )}

(c) The work required to put the spacecraft in low orbit is the same as the work to place the spacecraft at a very great distance away from the Earth

Explanation:

Here we have

The energy required is given by

Total energy, E = K.E + Gained P.E.

Where:

K.E. = Kinetic Energy

P.E. = Potential, gravitational Energy

P.E. can be found by

F_g =G\frac{m\times m_E}{(R_E + h)^2}

Where:

m = Mass of spacecraft

m_E = Mass of the Earth

R_E = Radius of the Earth

h = Height of the space craft above the Earth

G = Universal gravitational constant

Therefore, at height (R_E + h), we have, P.E. = m×g× (R_E + h)

But, m×g = Force = F_g

Therefore, P. E. =   F_g×(R_E + h) = G\frac{m\times m_E}{(R_E + h)}

Since P. E. tends to act in opposite direction to K.E. which is moving to a higher altitude, we have;

Total energy, E  given by

E = \frac{1}{2} mv^2 - G\frac{m\times m_E}{(R_E + h)}

However, we note that the spacecraft is in orbit, therefore

We note that to keep the spacecraft in orbit, we have

m\frac{v^2}{R_E+h}  = ma_{rad} = F_g

Therefore,

m\frac{v^2}{R_E+h}  = F_g =G\frac{m\times m_E}{(R_E + h)^2}

Which gives,

m{v^2} =G\frac{m\times m_E}{(R_E + h)}, that is

\frac{1}{2} mv^2 = G\frac{m\times m_E}{2(R_E + h)}

Total energy, E becomes

E = G\frac{m\times m_E}{2(R_E + h)} - G\frac{m\times m_E}{(R_E + h)}

E =  - G\frac{m\times m_E}{2\times (R_E + h)}

b) Given that the energy of the spacecraft on Earth is given by,

E_{Earth} = -G\frac{m\times m_E}{R_E^2}\times R_E = -G\frac{m\times m_E}{R_E} since v = 0

The work required to move the spacecrraft, W, to the near orbit was found as

- G\frac{m\times m_E}{2\times (R_E + h)} = W-G\frac{m\times m_E}{R_E}

Where  h << R_E we have

- G\frac{m\times m_E}{2\times (R_E )} = W-G\frac{m\times m_E}{R_E}

So that

W=G\frac{m\times m_E}{2\cdot R_E},

The minimum energy required to move the spacecraft to  a very great distance from the earth is given again by;

K.E. + Gain in P.E.

Here, since w require the minimum energy, then our v→0 and our

R_E + H_{(great \hspace{0.09cm} distance)} → ∞

Hence we have;

E = \frac{1}{2} mv^2 - G\frac{m\times m_E}{(R_E + H_{great\hspace{0.09cm}distance})} becomes

E_{great \hspace{0.09cm}dstance} = \frac{1}{2} m\cdot 0^2 - G\frac{m\times m_E}{\infty} = 0

Therefore, from E_{orbit} \to E_{great \hspace{0.09cm}dstance we have

E_{orbit} +W_{min} =  - G\frac{m\times m_E}{2\times (R_E )}+W_{min} =  E_{great \hspace{0.09cm}dstance} = 0

Which gives

W_{min} =  G\frac{m\times m_E}{2\times (R_E )}

SIZIF [17.4K]4 years ago
5 0

Answer:

Work done = (1/2)[(Gmm_e)/(R_e)]

Explanation:

I've attached the explanations below.

You might be interested in
Help on 9 and 10! Please help me!
Ivan

9 is D I believe, I don't know about 10

6 0
3 years ago
In a binary star system, an unseen component is found to have 8 solar masses. It would be visible if the system were a normal st
maksim [4K]

Answer:

Black Hole

Explanation:

A black hole is a very dense and massive stellar object, which has a field of gravity so large that not even light can escape it.

Since it does not emit light, <u>we cannot see them directly</u>, hence the name of black hole.

So in this case,<u> if the object has a mass of 8 solar masses that is enough to form a black hole</u>, and <u>also cannot be seen</u>, all of this indicates that the object we are talking about is a black hole.

It should be mentioned that although these objects do not emit light, because it cannot escape due to the immense force of gravity, black holes can be detected by a type of radiation emitted on their event horizon due to quantum effects called Hawking radiation .

5 0
3 years ago
A glass capillary tube with a diameter of 8.5 mm and length 8 cm is filled with a salt solution with a resistivity of 2.5 ?m. Wh
MA_775_DIABLO [31]

Answer:

The resistance is 3.5\times10^{-4}\ \Omega

Explanation:

Given that,

Diameter of tube = 8.5 mm

Length = 8 cm

Resistivity = 2.5 m

We need to calculate the resistance

The resistance is equal to the product of the resistivity and length divided by the area of cross section .

In mathematical form,

R = \dfrac{\rho\times l}{A}

Where, \rho=resistivity

l = length

A = area of cross section

Put the value into the formula

R = \dfrac{2.5\times8\times10^{-2}}{3.14\times(\dfrac{8.5}{2}\times10^{-3})^2}

R=3526.32\ \Omega

R=3.5\times10^{-4}\ \Omega

Hence, The resistance is 3.5\times10^{-4}\ \Omega

6 0
3 years ago
When lamps with wattages greater than the rating of the luminaire are installed, a fire could occur because the luminaire is bei
sergejj [24]

Answer:

true

Explanation:

Yes, it is true.

As the wattage is more than the prescribed wattage, it becomes overheated.

6 0
3 years ago
Over a time interval of 1.99 years, the velocity of a planet orbiting a distant star reverses direction, changing from +20.7 km/
madam [21]

Answer:

(a) - 42700 m/s

(b) - 6.8 x 10^-4 m/s^2

Explanation:

initial velocity of star, u = 20.7 km/s

Final velocity of star, v = - 22 km/s

time, t = 1.99 years

Convert velocities into m/s and time into second

So, u = 20700 m / s

v = - 22000 m/s

t = 1.99 x 365.25 x 24 x 3600 = 62799624 second

(a) Change in planet's velocity = final velocity - initial velocity

  = - 22000 - 20700 = - 42700 m/s

(b) Accelerate is defined as the rate of change of velocity.

Acceleration = change in velocity / time

                     = ( - 42700 ) / (62799624) = - 6.8 x 10^-4 m/s^2

8 0
3 years ago
Other questions:
  • A large, semi-truck hauling a full load and a small car are traveling in the same direction. As they approach a sharp curve in t
    15·1 answer
  • cylinder of mass 6.0 kg rolls without slipping on a horizontal surface. At a certain instant its center of mass has a speed of 1
    7·1 answer
  • The bar graph below shows the number of tickets sold for each of the seating sections in a baseball stadium.
    7·2 answers
  • A 55-liter tank is full and contains 40kg of fuel. Find using Sl units: • Density p. • Specific Weight y • Specific Gravity Answ
    12·1 answer
  • A tennis player is hitting a 58 gram tennis ball back across the net. When the racquet and the ball first make contact, the ball
    15·1 answer
  • Create a file "parts_inv.dat" that stores on each line a part number, cost, and quantity in inventory, in the following format:1
    6·1 answer
  • Two billiard balls with the same mass m move towards one another. Ball one travels in the positive x-direction with a speed of v
    10·1 answer
  • Me pueden ayudar por favor? es para hoy
    11·1 answer
  • I am deleting my account so here is some points
    8·2 answers
  • Propane (c3h8), a common fuel, reacts with oxygen to form carbon dioxide and water according to the equation below. c3h8 5o2 → 3
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!