1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
3 years ago
9

Calculate how much work is required to launch a spacecraft of mass mm from the surface of the earth (mass mEmE, radius RERE) and

place it in a circular low earth orbit--that is, an orbit whose altitude above the earth's surface is much less than RERE. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 kmkm, much less than RERE

Physics
2 answers:
pshichka [43]3 years ago
8 0

Question:

(a) Calculate how much work is required to launch a spacecraft of mass m from the surface of the earth (mass  mE , radius  RE ) and place it in a circular low earth orbit that is, an orbit whose altitude above the earth’s surface is much less than  RE

. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 km, much less than

RE=6370km

.)

Ignore the kinetic energy that the spacecraft has on the ground due to the earth’s rotation. (b) Calculate the minimum amount of additional work required to move the space craft from low earth orbit to a very great distance from the earth. Ignore the gravitational effects of the sun, the moon, and the other planets. (c) Justify the statement “In terms of energy, low earth orbit is halfway to the edge of the universe.”

Answer:

(a) E =  - G\frac{m\times m_E}{2\times (R_E + h)}

(b) W_{min} =  G\frac{m\times m_E}{2\times (R_E )}

(c) The work required to put the spacecraft in low orbit is the same as the work to place the spacecraft at a very great distance away from the Earth

Explanation:

Here we have

The energy required is given by

Total energy, E = K.E + Gained P.E.

Where:

K.E. = Kinetic Energy

P.E. = Potential, gravitational Energy

P.E. can be found by

F_g =G\frac{m\times m_E}{(R_E + h)^2}

Where:

m = Mass of spacecraft

m_E = Mass of the Earth

R_E = Radius of the Earth

h = Height of the space craft above the Earth

G = Universal gravitational constant

Therefore, at height (R_E + h), we have, P.E. = m×g× (R_E + h)

But, m×g = Force = F_g

Therefore, P. E. =   F_g×(R_E + h) = G\frac{m\times m_E}{(R_E + h)}

Since P. E. tends to act in opposite direction to K.E. which is moving to a higher altitude, we have;

Total energy, E  given by

E = \frac{1}{2} mv^2 - G\frac{m\times m_E}{(R_E + h)}

However, we note that the spacecraft is in orbit, therefore

We note that to keep the spacecraft in orbit, we have

m\frac{v^2}{R_E+h}  = ma_{rad} = F_g

Therefore,

m\frac{v^2}{R_E+h}  = F_g =G\frac{m\times m_E}{(R_E + h)^2}

Which gives,

m{v^2} =G\frac{m\times m_E}{(R_E + h)}, that is

\frac{1}{2} mv^2 = G\frac{m\times m_E}{2(R_E + h)}

Total energy, E becomes

E = G\frac{m\times m_E}{2(R_E + h)} - G\frac{m\times m_E}{(R_E + h)}

E =  - G\frac{m\times m_E}{2\times (R_E + h)}

b) Given that the energy of the spacecraft on Earth is given by,

E_{Earth} = -G\frac{m\times m_E}{R_E^2}\times R_E = -G\frac{m\times m_E}{R_E} since v = 0

The work required to move the spacecrraft, W, to the near orbit was found as

- G\frac{m\times m_E}{2\times (R_E + h)} = W-G\frac{m\times m_E}{R_E}

Where  h << R_E we have

- G\frac{m\times m_E}{2\times (R_E )} = W-G\frac{m\times m_E}{R_E}

So that

W=G\frac{m\times m_E}{2\cdot R_E},

The minimum energy required to move the spacecraft to  a very great distance from the earth is given again by;

K.E. + Gain in P.E.

Here, since w require the minimum energy, then our v→0 and our

R_E + H_{(great \hspace{0.09cm} distance)} → ∞

Hence we have;

E = \frac{1}{2} mv^2 - G\frac{m\times m_E}{(R_E + H_{great\hspace{0.09cm}distance})} becomes

E_{great \hspace{0.09cm}dstance} = \frac{1}{2} m\cdot 0^2 - G\frac{m\times m_E}{\infty} = 0

Therefore, from E_{orbit} \to E_{great \hspace{0.09cm}dstance we have

E_{orbit} +W_{min} =  - G\frac{m\times m_E}{2\times (R_E )}+W_{min} =  E_{great \hspace{0.09cm}dstance} = 0

Which gives

W_{min} =  G\frac{m\times m_E}{2\times (R_E )}

SIZIF [17.4K]3 years ago
5 0

Answer:

Work done = (1/2)[(Gmm_e)/(R_e)]

Explanation:

I've attached the explanations below.

You might be interested in
) Suppose a particle travels along a straight line with velocity v(t) = t 2 e −3t meters per second after t seconds. How far doe
pshichka [43]

Answer:

x(t=3s) = 0.07 m to the nearest hundredth

Explanation:

v(t) = t² e⁻³ᵗ

Find displacement after t = 3 s.

Recall, velocity, v = (dx/dt)

v = (dx/dt) = t² e⁻³ᵗ

dx = t² e⁻³ᵗ dt

∫ dx = ∫ t² e⁻³ᵗ dt

This integration will be done using the integration by parts method.

Integration by parts is done this way...

∫ u dv = uv - ∫ v du

Comparing ∫ t² e⁻³ᵗ dt to ∫ u dv

u = t²

∫ dv = ∫ e⁻³ᵗ dt

u = t²

(du/dt) = 2t

du = 2t dt

∫ dv = ∫ e⁻³ᵗ dt

v = (-e⁻³ᵗ/3)

∫ u dv = uv - ∫ v du

Substituting the variables for u, v, du and dv

∫ t² e⁻³ᵗ dt = (-t²e⁻³ᵗ/3) - ∫ (-e⁻³ᵗ/3) 2t dt

= (-t²e⁻³ᵗ/3) - ∫ 2t (-e⁻³ᵗ/3) dt

But the integral (∫ 2t (-e⁻³ᵗ/3) dt) is another integration by parts problem.

∫ u dv = uv - ∫ v du

u = 2t

∫ dv = ∫ (-e⁻³ᵗ/3) dt

u = 2t

(du/dt) = 2

du = 2 dt

∫ dv = ∫ (-e⁻³ᵗ/3) dt

v = (e⁻³ᵗ/9)

∫ u dv = uv - ∫ v du

Substituting the variables for u, v, du and dv

∫ 2t (-e⁻³ᵗ/3) dt = 2t (e⁻³ᵗ/9) - ∫ 2 (e⁻³ᵗ/9) dt = 2t (e⁻³ᵗ/9) + (2e⁻³ᵗ/27)

Putting this back into the main integration by parts equation

∫ t² e⁻³ᵗ dt = (-t²e⁻³ᵗ/3) - ∫ 2t (-e⁻³ᵗ/3) dt = (-t²e⁻³ᵗ/3) - [2t (e⁻³ᵗ/9) + (2e⁻³ᵗ/27)]

x(t) = ∫ t² e⁻³ᵗ dt = (-t²e⁻³ᵗ/3) - 2t (e⁻³ᵗ/9) - (2e⁻³ᵗ/27) + k (k = constant of integration)

x(t) = (-t²e⁻³ᵗ/3) - 2t (e⁻³ᵗ/9) - (2e⁻³ᵗ/27) + k

At t = 0 s, v(0) = 0, hence, x(0) = 0

0 = 0 - 0 - (2/27) + k

k = (2/27)

x(t) = (-t²e⁻³ᵗ/3) - 2t (e⁻³ᵗ/9) - (2e⁻³ᵗ/27) + (2/27)

At t = 3 s

x(3) = (-9e⁻⁹/3) - (6e⁻⁹/9) - (2e⁻⁹/27) + (2/27)

x(3) = -0.0003702294 - 0.0000822732 - 0.0000091415 + 0.0740740741 = 0.07361243 m = 0.07 m to the nearest hundredth.

7 0
3 years ago
Read 2 more answers
The equation r (t )=(2t + 4)⋅i + (√ 7 )t⋅ j + 3t ²⋅k the position of a particle in space at time t. Find the angle between the v
velikii [3]

Answer:

\theta = n\pi/2, {\rm where~n~is~an~integer.}

Explanation:

We should first find the velocity and acceleration functions. The velocity function is the derivative of the position function with respect to time, and the acceleration function is the derivative of the velocity function with respect to time.

\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = (2)\^i + (\sqrt{7})\^j + (6t)\^k

Similarly,

\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = (6)\^k

Now, the angle between velocity and acceleration vectors can be found.

The angle between any two vectors can be found by scalar product of them:

\vec{A}.\vec{B} = |\vec{A}|.|\vec{B}|.\cos(\theta)

So,

\vec{v}(t).\vec{a}(t) = |\vec{v}(t)|.|\vec{a}(t)|.\cos(\theta)\\36t = \sqrt{4 + 7 + 36t^2}.6.\cos(\theta)

At time t = 0, this equation becomes

0 = 6\sqrt{11}\cos(\theta)\\\cos(\theta) = 0\\\theta = n\pi/2, {\rm where~n~is~an~integer.}

7 0
3 years ago
1. What are three questions you should ask before joining a club?
lara [203]

Answer:

what time does it start.

what do I need to join.

what are your expectations.

7 0
3 years ago
Which of the following is not a vector quantity?
maksim [4K]

Answer:

A. Speed

Explanation:

A vector quantity is a quantity which has both magnitude and direction. Here in the given options, speed is a scalar quantity but not the vector quantity.

7 0
3 years ago
What is the equation for force
Basile [38]
The equation is F=ma :)
3 0
3 years ago
Read 2 more answers
Other questions:
  • . What happens to the polarity of an electromagnet when the direction of the current passing through it is reversed?
    12·1 answer
  • At one instant, an electron (charge = –1.6 x 10–19 C) is moving in the xy plane, the components of its velocity being vx = 5.0 x
    11·1 answer
  • Water drops from the nozzle of a shower onto the floor 81 inches below. The drops fall at regular intervals of time, the first d
    13·1 answer
  • What is the difference between an elastic and inelastic collision
    7·1 answer
  • Which groups on the periodic table contain metalloids?
    14·2 answers
  • In the modern quantum-based atomic theory, what is the name given to a particular space around the nucleus in which an electron
    14·1 answer
  • A car is traveling in a uniform circular motion on a section of road whose radius is r. The road is slippery, and the car is jus
    14·1 answer
  • A supercapacitor is an electrical energy storage device. A supercapacitor, initially charged to 2.1 thousand millivolts, supplie
    15·1 answer
  • A mercury in barometer shows a height of 70cm.What height would be shown in the barometer at the same place if water density 1.0
    15·1 answer
  • Anne has a sample of a substance. Its volume is 20 cm3, and its mass is 100 grams. What is the sample’s density? The sample’
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!