1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
4 years ago
9

Calculate how much work is required to launch a spacecraft of mass mm from the surface of the earth (mass mEmE, radius RERE) and

place it in a circular low earth orbit--that is, an orbit whose altitude above the earth's surface is much less than RERE. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 kmkm, much less than RERE

Physics
2 answers:
pshichka [43]4 years ago
8 0

Question:

(a) Calculate how much work is required to launch a spacecraft of mass m from the surface of the earth (mass  mE , radius  RE ) and place it in a circular low earth orbit that is, an orbit whose altitude above the earth’s surface is much less than  RE

. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 km, much less than

RE=6370km

.)

Ignore the kinetic energy that the spacecraft has on the ground due to the earth’s rotation. (b) Calculate the minimum amount of additional work required to move the space craft from low earth orbit to a very great distance from the earth. Ignore the gravitational effects of the sun, the moon, and the other planets. (c) Justify the statement “In terms of energy, low earth orbit is halfway to the edge of the universe.”

Answer:

(a) E =  - G\frac{m\times m_E}{2\times (R_E + h)}

(b) W_{min} =  G\frac{m\times m_E}{2\times (R_E )}

(c) The work required to put the spacecraft in low orbit is the same as the work to place the spacecraft at a very great distance away from the Earth

Explanation:

Here we have

The energy required is given by

Total energy, E = K.E + Gained P.E.

Where:

K.E. = Kinetic Energy

P.E. = Potential, gravitational Energy

P.E. can be found by

F_g =G\frac{m\times m_E}{(R_E + h)^2}

Where:

m = Mass of spacecraft

m_E = Mass of the Earth

R_E = Radius of the Earth

h = Height of the space craft above the Earth

G = Universal gravitational constant

Therefore, at height (R_E + h), we have, P.E. = m×g× (R_E + h)

But, m×g = Force = F_g

Therefore, P. E. =   F_g×(R_E + h) = G\frac{m\times m_E}{(R_E + h)}

Since P. E. tends to act in opposite direction to K.E. which is moving to a higher altitude, we have;

Total energy, E  given by

E = \frac{1}{2} mv^2 - G\frac{m\times m_E}{(R_E + h)}

However, we note that the spacecraft is in orbit, therefore

We note that to keep the spacecraft in orbit, we have

m\frac{v^2}{R_E+h}  = ma_{rad} = F_g

Therefore,

m\frac{v^2}{R_E+h}  = F_g =G\frac{m\times m_E}{(R_E + h)^2}

Which gives,

m{v^2} =G\frac{m\times m_E}{(R_E + h)}, that is

\frac{1}{2} mv^2 = G\frac{m\times m_E}{2(R_E + h)}

Total energy, E becomes

E = G\frac{m\times m_E}{2(R_E + h)} - G\frac{m\times m_E}{(R_E + h)}

E =  - G\frac{m\times m_E}{2\times (R_E + h)}

b) Given that the energy of the spacecraft on Earth is given by,

E_{Earth} = -G\frac{m\times m_E}{R_E^2}\times R_E = -G\frac{m\times m_E}{R_E} since v = 0

The work required to move the spacecrraft, W, to the near orbit was found as

- G\frac{m\times m_E}{2\times (R_E + h)} = W-G\frac{m\times m_E}{R_E}

Where  h << R_E we have

- G\frac{m\times m_E}{2\times (R_E )} = W-G\frac{m\times m_E}{R_E}

So that

W=G\frac{m\times m_E}{2\cdot R_E},

The minimum energy required to move the spacecraft to  a very great distance from the earth is given again by;

K.E. + Gain in P.E.

Here, since w require the minimum energy, then our v→0 and our

R_E + H_{(great \hspace{0.09cm} distance)} → ∞

Hence we have;

E = \frac{1}{2} mv^2 - G\frac{m\times m_E}{(R_E + H_{great\hspace{0.09cm}distance})} becomes

E_{great \hspace{0.09cm}dstance} = \frac{1}{2} m\cdot 0^2 - G\frac{m\times m_E}{\infty} = 0

Therefore, from E_{orbit} \to E_{great \hspace{0.09cm}dstance we have

E_{orbit} +W_{min} =  - G\frac{m\times m_E}{2\times (R_E )}+W_{min} =  E_{great \hspace{0.09cm}dstance} = 0

Which gives

W_{min} =  G\frac{m\times m_E}{2\times (R_E )}

SIZIF [17.4K]4 years ago
5 0

Answer:

Work done = (1/2)[(Gmm_e)/(R_e)]

Explanation:

I've attached the explanations below.

You might be interested in
State an advantage of using such hydraulic jack to lift a load ​
expeople1 [14]

Answer:

Explanation:

You are going to lift and press down on the 200 N many times and move only a short distance. The reward is that slowly but surely you will lift a very heavy load -- one that cannot be managed any other way but by the hydraulic jack.

5 0
3 years ago
The free body diagram represents Silly Sally hanging from a trapeze bar. Sally weighs 660 Newtons. What is the force in each of
Y_Kistochka [10]
A) 330 N

Explanation: Her weight must be evenly distributed between the chains (assuming they are at an even level), so you divide 660 by 2 and get 330
7 0
4 years ago
Which one of these are considered as mechanical energy?
MA_775_DIABLO [31]

Answer:

Kinetic energy and potential energy.

The term 'mechanical energy' refers to the sum of the kinetic energy and the gravitational potential energy of an object,

8 0
3 years ago
All of the following are important reasons to take notes except.
jeka57 [31]

Its a waste of time, you have to not only write it down, but study it after too . other than that notes are great.

4 0
3 years ago
Read 2 more answers
Moving a neutral wire in a(n) ____ field will induce a(n) _____.
frutty [35]

the answer is b) magnetic current

7 0
4 years ago
Other questions:
  • A graduate student has done a careful analysis of the spectrum of a star. While she has found lines from many elements, there wa
    12·1 answer
  • A driver slammed on her brakes and came to a stop with constant acceleration. Measurements on her tires and skid marks on the pa
    7·1 answer
  • You biked to the store in 10 minutes. The store was 3 km away. What was your average speed?
    12·1 answer
  • A train is travelling at speed of 20m/s. Brakes are applied so as to produce a uniform acceleration of -0.5m/s2. find how far th
    9·1 answer
  • A capacitor is connected to a power source and begins charging. What causes the capacitor to stop charging while it is still con
    10·1 answer
  • Select the statement that correctly describes how light travels?
    11·1 answer
  • PLEASE HELP WILL GIVE BRAINLIEST!!!!!!!
    6·1 answer
  • Suppose a person sits on a skateboard with her feet up and throws a ball. Explain why she will move as a result of throwing the
    13·1 answer
  • PHYSICS 50 POINTS PLEASE HELP
    5·2 answers
  • According to Newton's second law of motion, if we have a rigid, unchanging mass and we observe it accelerating, what must be hap
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!