1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
3 years ago
9

Calculate how much work is required to launch a spacecraft of mass mm from the surface of the earth (mass mEmE, radius RERE) and

place it in a circular low earth orbit--that is, an orbit whose altitude above the earth's surface is much less than RERE. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 kmkm, much less than RERE

Physics
2 answers:
pshichka [43]3 years ago
8 0

Question:

(a) Calculate how much work is required to launch a spacecraft of mass m from the surface of the earth (mass  mE , radius  RE ) and place it in a circular low earth orbit that is, an orbit whose altitude above the earth’s surface is much less than  RE

. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 km, much less than

RE=6370km

.)

Ignore the kinetic energy that the spacecraft has on the ground due to the earth’s rotation. (b) Calculate the minimum amount of additional work required to move the space craft from low earth orbit to a very great distance from the earth. Ignore the gravitational effects of the sun, the moon, and the other planets. (c) Justify the statement “In terms of energy, low earth orbit is halfway to the edge of the universe.”

Answer:

(a) E =  - G\frac{m\times m_E}{2\times (R_E + h)}

(b) W_{min} =  G\frac{m\times m_E}{2\times (R_E )}

(c) The work required to put the spacecraft in low orbit is the same as the work to place the spacecraft at a very great distance away from the Earth

Explanation:

Here we have

The energy required is given by

Total energy, E = K.E + Gained P.E.

Where:

K.E. = Kinetic Energy

P.E. = Potential, gravitational Energy

P.E. can be found by

F_g =G\frac{m\times m_E}{(R_E + h)^2}

Where:

m = Mass of spacecraft

m_E = Mass of the Earth

R_E = Radius of the Earth

h = Height of the space craft above the Earth

G = Universal gravitational constant

Therefore, at height (R_E + h), we have, P.E. = m×g× (R_E + h)

But, m×g = Force = F_g

Therefore, P. E. =   F_g×(R_E + h) = G\frac{m\times m_E}{(R_E + h)}

Since P. E. tends to act in opposite direction to K.E. which is moving to a higher altitude, we have;

Total energy, E  given by

E = \frac{1}{2} mv^2 - G\frac{m\times m_E}{(R_E + h)}

However, we note that the spacecraft is in orbit, therefore

We note that to keep the spacecraft in orbit, we have

m\frac{v^2}{R_E+h}  = ma_{rad} = F_g

Therefore,

m\frac{v^2}{R_E+h}  = F_g =G\frac{m\times m_E}{(R_E + h)^2}

Which gives,

m{v^2} =G\frac{m\times m_E}{(R_E + h)}, that is

\frac{1}{2} mv^2 = G\frac{m\times m_E}{2(R_E + h)}

Total energy, E becomes

E = G\frac{m\times m_E}{2(R_E + h)} - G\frac{m\times m_E}{(R_E + h)}

E =  - G\frac{m\times m_E}{2\times (R_E + h)}

b) Given that the energy of the spacecraft on Earth is given by,

E_{Earth} = -G\frac{m\times m_E}{R_E^2}\times R_E = -G\frac{m\times m_E}{R_E} since v = 0

The work required to move the spacecrraft, W, to the near orbit was found as

- G\frac{m\times m_E}{2\times (R_E + h)} = W-G\frac{m\times m_E}{R_E}

Where  h << R_E we have

- G\frac{m\times m_E}{2\times (R_E )} = W-G\frac{m\times m_E}{R_E}

So that

W=G\frac{m\times m_E}{2\cdot R_E},

The minimum energy required to move the spacecraft to  a very great distance from the earth is given again by;

K.E. + Gain in P.E.

Here, since w require the minimum energy, then our v→0 and our

R_E + H_{(great \hspace{0.09cm} distance)} → ∞

Hence we have;

E = \frac{1}{2} mv^2 - G\frac{m\times m_E}{(R_E + H_{great\hspace{0.09cm}distance})} becomes

E_{great \hspace{0.09cm}dstance} = \frac{1}{2} m\cdot 0^2 - G\frac{m\times m_E}{\infty} = 0

Therefore, from E_{orbit} \to E_{great \hspace{0.09cm}dstance we have

E_{orbit} +W_{min} =  - G\frac{m\times m_E}{2\times (R_E )}+W_{min} =  E_{great \hspace{0.09cm}dstance} = 0

Which gives

W_{min} =  G\frac{m\times m_E}{2\times (R_E )}

SIZIF [17.4K]3 years ago
5 0

Answer:

Work done = (1/2)[(Gmm_e)/(R_e)]

Explanation:

I've attached the explanations below.

You might be interested in
The graph of an object's position over time is a horizontal line and y is not equal to 0. What must be true abou
frozen [14]

Answer:D: the velocity is zero

Explanation:

7 0
3 years ago
What type of image can be larger or smaller than the object?
Stolb23 [73]
It’s D. An enlargement (hope this helps!)
4 0
3 years ago
What are the 3 basic parts of an atom and what are their charges?
kotegsom [21]

Answer:

electrons neutrons and protons

Explanation:

electron are negative

nuetron are neutral

protons are positive

7 0
3 years ago
A rocket is launched at an angle of = 49° above the horizontal with an initial speed vi = 54 m/s, as shown below. It moves for 2
4vir4ik [10]
I never seem to pretty best friends
7 0
2 years ago
Which is present when iodine changes from brown to blue or purple?
vladimir1956 [14]


If iodine is added to a starch solution, they react with each other and the iodine  darkens to an almost pitch black.

however, if iodine is added to a solution containing no starch, it will show up only as an extremely pale brown. almost colorless and hardly visible.

when following the changes in some inorganic oxidation reduction reactions, iodine may be used as an indicator to follow the changes of iodide ion and iodine element. soluble starch solution is added. only iodine element in the presence of iodide ion will give the characteristic blue black color. neither iodine element alone nor iodide ions alone will give the color result.

hope this answer really helps your question :)

5 0
3 years ago
Other questions:
  • What was the hiker's average velocity during Part A of the hike?
    11·2 answers
  • Jacques and Georgette meet in the middle of a lake while paddling in their canoes. They come to a complete stop and talk for a w
    11·1 answer
  • Your science class decides to conduct an experiment to learn more about ice. You set one ice cube on the counter at room tempera
    14·2 answers
  • When you snap your wrist open, the frisbee ____
    13·1 answer
  • A 5 kg block is being pulled to the right by a rope tied to it. the block is accelerating at 2 m/s2 to the right. how much force
    8·2 answers
  • During a golf drive, the angular velocity of the driver is 20 rad/s just before impact with the golf ball. If the distance from
    6·1 answer
  • A soccer ball of mass 0.4 kg is moving horizontally with a speed of 20 m/s when it is kicked by a player. The kicking force is s
    14·1 answer
  • What are 3 common sources of voltage difference?
    5·1 answer
  • What is the angle of incidence in air of a light ray whose angle of refraction in glass is half the angle of incidence? Show pro
    10·1 answer
  • Radiation transfers thermal energy through
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!