Answer:
Divide by 3
Explanation:
In order to estimate the distance traveled by a lightening flash in kilometers, we follow these simple steps:
- Make a count of the number of seconds in between the period a flash occur and the thunder accompanied by the lightening flash is heard.
- Dive the total number of seconds by 3 to get the distance traveled by the flash. This is because in order to cover 1 km, it roughly takes 3 seconds.
There is a displacement. Just because the ball is thrown up,
and not crossways, doesn't mean its location is not moving. Remember, positive
displacement is together a displacement in the direction east, right, and up.
The velocity is the distance over time. To compute that, you must look how high
the ball moved before falling back down. Acceleration is expected to be
constant at 9.80m/s^2. That is the force of gravity. But remember that you are disregarding
air friction when you are computing the acceleration.
Answer:
Longest wavelength, lowest intensity
Explanation:
Answer:
The block didn't slide due to balancing of gravitational force with friction force
Explanation:
When the block was given a flick the force provided an acceleration to it and it moved up the inclined plane. when the block reached top it was expected that it would slide back but it didn't this happened because of the frictional force acting on the bottom the block which was balancing the gravitational force component along the plane and this prevented sliding back of the block.
static friction was balancing mg*sin(theta)
fs = mg*sin(theta)
By looking at the potential energies before and after the reaction, we can tell that the reaction is exothermic (final < initial) or endodermic (final > initial).
Also, the amount of activation energy gives an idea of the external energy required to initiate the reaction (for example, by heating the reactants).
Furthermore, by the same principle, we can also deduce the activation energy for the reverse reaction.
If a catalyst is available, the diagram will show a reduced activation energy, compared to a reaction without catalyst. However, it will also show that the catalyst does not alter the initial and final energies of the reaction.