Answer:
SATA tiene las siguientes características importantes: Voltaje reducido. Los estándares ATA actuales utilizan 5,0 V o 3,3 V (ATA-100/133). Estos voltajes relativamente altos junto con altas densidades de pines hacen que 100 MB / s sea la velocidad de datos más alta que se puede alcanzar de manera realista.
Answer:
c. Clockwise
Explanation:
As per FARADAY's the rate of change in magnetic flux linked with a coil will induce EMF in the coil and this will result the induce current in the coil.
Here we know that the direction of induced current in the closed loop is in such a way that the magnetic flux due to induced current always oppose the flux due to which it is induced
So we can say that if the flux linked with the coil will increase with time then flux of induced current will be in opposite direction to oppose the increasing flux.
So here when magnetic field becomes stronger then the induced current is in such a way that will always oppose the increasing flux of magnetic field
So we will say that correct answer will be
c. Clockwise
Answer: T = 472.71 N
Explanation: The wire vibrates thus making sound waves in the tube.
The frequency of sound wave on the string equals frequency of sound wave in the tube.
L= Length of wire = 26cm = 0.26m
u=linear density of wire = 20g/m = 0.02kg/m
Length of open close tube = 86cm = 0.86m
Sound waves in the tube are generated at the second vibrational mode, hence the relationship between the length of air and and wavelength is given as
L = 3λ/4
0.86 = 3λ/4
3λ = 4 * 0.86
3λ = 3.44
λ = 3.44/3 = 1.15m.
Speed of sound in the tube = 340 m/s
Hence to get frequency of sound, we use the formulae below.
v = fλ
340 = f * 1.15
f = 340/ 1.15
f = 295.65Hz.
f = 295.65 = frequency of sound wave in pipe = frequency of sound wave in string.
The string vibrated at it fundamental frequency hence the relationship the length of string and wavelength is given as
L = λ/2
0.26 = λ/2
λ = 0.52m
The speed of sound in string is given as v = fλ
Where λ = 0.52m f = 295.65 Hz
v = 295.65 * 0.52
v = 153.738 m/s.
The velocity of sound in the string is related to tension, linear density and tension is given below as
v = √(T/u)
153.738 = √T/ 0.02
By squaring both sides
153.738² = T / 0.02
T = 153.738² * 0.02
T = 23,635.372 * 0.02
T= 472.71 N
No. Sorry. A sound wave is a mechanical wave. There's nothing electromagnetic about it.
Joule
The standard unit for kinetic energy is the joule (J). The joule is the standard unit for energy in general. Other units for energy include the newton-meter (Nm) and the kilogram meter squared over seconds squared (kg m2/s2).