The number of electrons is equal to the number of protons.
Given the speed and the distance, to find time you can use the formula speed is equal to distance over time. From there you can manipulate the equation for time to equal the distance divided by speed. Time is equal to 18.4 meters divided by 35m/s which equals 0.526 seconds.
Answer:
As you may know, each element has a "fixed" number of protons and electrons.
These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.
We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)
Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.
Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.
And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.
Momentum = (mv).
<span>(2110 x 24) = 50,640kg/m/sec. truck momentum. </span>
<span>Velocity required for car of 1330kg to equal = (50,640/1330), = 38m/sec</span>
Answer:
The marble was moving in a projectile and the speed of the engine was 2.716 m/s
Explanation:
The vertical component of the marble's flight path relative to the train
is given by the equation y(t) = v*t - (4.9)*t^2,
where, v is the initial upward velocity of the marble relative to the train.
So with y(1) = v - 4.9 = 0 we have
v = 4.9 m/s.
The marble will reach maximum height after 0.5 seconds, at which the
height will be y(0.5) = (4.9)*(0.5) - (4.9)*(0.5)^2 = (4.9)*(0.25) = 1.225 m.
Now, the marble has a vertical velocity component of 4.9 m/s and a horizontal velocity component
of V m/s such that tan(61) = 4.9 / V
V = 4.9 / tan(61) = 2.716 m/s
This horizontal velocity component of the marble is the same as the
speed of the train i.e. 2.716 m/s.