In a series circuit, a common current flows through all the components of the circuit. While in a parallel circuit, a different amount of current flows through each parallel branch of the circuit. Whereas in the parallel circuit, the same voltage exists across the multiple components in the circuit.
Hope It Helps!
Voltage = (current) x (resistance)
= (19 A) x (14 ohms) = 266 volts .
Note: Be careful using that thing !
It's dissipating
I² R = (19 A)² x (14 ohms) = 5,054 watts ! ! !
That's an awful lot of power for a blow-dryer !
The dryer is certainly not using very much of that power to run the fan.
Most of it is being used to heat air. 5 kilowatts is more power than most
toasters or microwave ovens use, so please be careful with how much of
your hair or skin you expose to that hot-air blast. You could probably cook
a meatloaf with it.
D. This is the part of the system that changes the output after comparing it to the input. The sensor tells where the actual system is presently, the effector is the physical device the system is controlling and the response is how the system responds to output. The integrating center is in charge of putting it all together and thus knows (contains) the desired set point
Answer:
Maximum velocity will be 17.651 m /sec
Explanation:
We have given a rope breaks when tension reaches 205 N
Mass m = 0.477 kg
Radius of the circle r = 0.725 m
Tension in the rope is given by




v = 17.651 m /sec
Answer:
11.962337 × 10^-4 N
Explanation:
Given the following :
Length L = 11.8
Charge = 29nC = 29 × 10^-9 C
Linear charge density λ = 1.4 × 10^-7 C/m
Radius (r) = 2cm = 2/100 = 0.02 m
Using the relation:
E = 2kλ/r ; F =qE
F = 2kλq/L × ∫dr/r
F = 2*k*q*λ/L × (In(0.02 + L) - In(0.02))
2*k*q*λ/L = [2 × (9 * 10^9) * (29 * 10^9) * (1.4 * 10^-7)]/ 0.118] = 6193.2203 × 10^(9 - 9 - 7) = 6193.2203 × 10^-7 = 6.1932203 × 10^-4
In(0.02 + 0.118) - In(0.02) = In(0.138) - In(0.02) = 1.9315214
Hence,
(6.1932203 × 10^-4) × 1.9315214 = 11.962337 × 10^-4 N