Through gases as the bonds are tightly bound. Mechanical waves travel by vibrating through the medium so the more tight the bonds , the faster the waves.
The reaction force in this situation occur once it hits the ground, and normal force from Earth's surface will push up on the ball with 1.4 N.
<em>The correct answer is option (</em><em>C</em><em>) </em>
<h3>
What is Newton's third law of motion?</h3>
Newton's third law of motion states that for every action there is equal and opposite reaction.
Mathematically, this law is given as;
Fa = Fb
where;
- Fa is the force applied by object A
- Fb is the reaction experienced by object B
The force applied by object is equal and opposite the reaction experienced by object B.
When an object placed on the floor, the weight of the object acts downward while the normal reaction of the object acts upwards.
Thus, if you drop a baseball and let it fall, gravity from Earth pulls down on the baseball with 1.4 N of force, the reaction force will occur once it hits the ground, as the normal force from Earth's surface will push up on the ball with 1.4 N.
Learn more about reaction force here: brainly.com/question/1013858
#SPJ1
Answer:
v = 15.8 m/s
Explanation:
Let's analyze the situation a little, we have a compressed spring so it has an elastic energy that will become part kinetic energy and a potential part for the man to get out of the barrel, in addition there is a friction force that they perform work against the movement. So the variation of mechanical energy is equal to the work of the fictional force
= ΔEm =
-Em₀
Let's write the mechanical energy at each point
Initial
Em₀ = Ke = ½ k x²
Final
= K + U = ½ m v² + mg y
Let's use Hooke's law to find compression
F = - k x
x = -F / k
x = 4400/1100
x = - 4 m
Let's write the energy equation
fr d = ½ m v² + mgy - ½ k x²
Let's clear the speed
v² = (fr d + ½ kx² - mg y) 2 / m
v² = (40 4.00 + ½ 1100 4² - 60.0 9.8 2.50) 2/60.0
v² = (160 + 8800 - 1470) / 30
v = √ (229.66)
v = 15.8 m/s
No clue brother this one diff kit
at t=T/6, total distance covered= 2*pi*r/6 and displacement= r
difference of them = 2*t
so, 2*pi*r/6- r =2(1/6)=1/3
r=1/(pi-3)=7.062