Answer:
False I'm pretty sure sorry If its wrong
Location of the class depends on satiation
Answer:
Q = -68.859 kJ
Explanation:
given details
mass 
initial pressure P_1 = 104 kPa
Temperature T_1 = 25 Degree C = 25+ 273 K = 298 K
final pressure P_2 = 1068 kPa
Temperature T_2 = 311 Degree C = 311+ 273 K = 584 K
we know that
molecular mass of 
R = 8.314/44 = 0.189 kJ/kg K
c_v = 0.657 kJ/kgK
from ideal gas equation
PV =mRT






WORK DONE

w = 586*(0.1033 -0.514)
W =256.76 kJ
INTERNAL ENERGY IS



HEAT TRANSFER

= 187.902 +(-256.46)
Q = -68.859 kJ
Answer:
The spring is compressed by 0.275 meters.
Explanation:
For equilibrium of the gas and the piston the pressure exerted by the gas on the piston should be equal to the sum of weight of the piston and the force the spring exerts on the piston
Mathematically we can write

we know that


Now the force exerted by an spring compressed by a distance 'x' is given by 
Using the above quatities in the above relation we get
