Answer:
Domain {-2,0,2}
Range {-2,0,2}
Relation is a Function
Step-by-step explanation:
We are given a relation:
{ (-2,-2) , (0,0) , (2,2) }
Domain can be defined as the all possible values of x for a relation. It is considered as a set of all first values of the ordered pairs of a given relation.
Domain of the given relation is {-2,0,2}
Range can be defined as all possible value of y which corresponds to the values of x in the domain. It is considered as a set of all second values of the ordered pairs of a given relation.
Range of the given relation is {-2,0,2}
A relation is a function if only there is one value of y for each value of x. If in the set of ordered pair of the relation, the value of x gets repeated, then the relation is not a function.
As no values of x are getting repeated, the relation is a function.
A^2 = b^2 + c^2 - 2bc cos a
= 11^2 + 5^2 - 2*5*11 cos 40
= 7.86 to 2 DP's
to find the remaining angles use the sine rule:-
a / sin A = b / sin B so
7.857/ sin 40 = 11 / sin B
sin B = 11 sin40 / 7.857 = 0.8999
<B = 64 degrees
so <C = 180 - 64-40 = 76 degrees
Answer:
No
Step-by-step explanation:
To determine if (- 5, - 5) is a solution
Substitute x = - 5 into the inequality and compare answer to y
- 2(- 5) + 4 = 10 + 4 = 14 > - 5 ← the y- coordinate
Thus (- 5, - 5) is not a solution to the inequality