Here, we are required to find the area of the paper board given after the semicircle is cut out of it
Area of the paper board thatremains is 423 in²
Length = 29 in
Width = 20 in
Area of a rectangle = length × width
= 29 in × 20 in
= 580 in²
Area of a semi circle = πr²/2
π = 3.14
r = diameter / 2 = 20 in / 2 = 10 in
Area of a semi circle = πr²/2
= 3.14 × (10 in)² / 2
= 3.14 × 100 in² / 2
= 314 in²/2
= 157 in²
The semicircle is cut out of the rectangle
Find the area of the paper board that remains after the semicircle is cut out of it by subtracting the area of a semi circle from the area of a rectangle
Area of the paper board that remains = Area of a rectangle - Area of a semi circle
= 580 in² - 157 in²
= 423 in²
brainly.com/question/16994941
The bisector of the angle at A (call it AQ) divides the segment BC into segments BQ:QC having the ratio AB:AC. Use this fact to find x.
.. 9:15 = (2x -1):3x
.. 15(2x -1) = 9*3x . . . . . the product of the means equals the product of extremes
.. 30x -15 = 27x
.. 3x = 15
.. x = 5
___
According to the value of x, the bisector AQ divides the triangle into two isosceles triangles: ABQ, ACQ.
Answer:
The x-intercept is at the point (5,0).
Step-by-step explanation:
-2x + 5y = -10
At the x intercept y = 0 so we substitute y = 0 into the given equation:
-2x + 5(0) = -10
-2x = -10
x = 5.
4x+10y=-13...you have to add the variables that are the same and then subtract the 13 from 0
Answer:
it depends
Step-by-step explanation:
it really just depends