Answer:
surface area is 39
Step-by-step explanation:
add the areas of each geometric figure making up the composite 3D figure.
first 3D figure
2+2+6+6
=16---eq 1
from third 3D figure
4+4+10+5
= 23
from 1 and 2
16+23
= 39
may be!! I'm not sure bout this answer
Answer:
C. 18 cm
Step-by-step explanation:
The ratio of the sides of the triangle shown is 12 : 15 = 4 : 5. We know it is a right triangle, so we know the missing side length completes the ratio
3 : 4 : 5 = 9 : 12 : 15
Half of XY is 9 cm, so the length of the entire chord is 18 cm.
_____
The chord is tangent to the inner circle, so makes a 90° angle with the radius to that tangent point. This tells you that the triangle shown is a right triangle. It also tells you that the short radius bisects the chord. The Pythagorean theorem can be used to find the length of the side not shown (half the chord length).
The unknown side (a) can be found from ...
15² = 12² +a²
225 -144 = a² . . . . . . subtract 12²
81 = a² . . . . . . . . . . . simplify
9 = a . . . . . . . . . . . . . take the square root
The chord length is 2a, so is ...
2(9 cm) = 18 cm . . . . length of chord XY

- Given - <u>an </u><u>equation</u><u> </u><u>in </u><u>a </u><u>standard</u><u> </u><u>form</u>
- To do - <u>simplify</u><u> </u><u>the </u><u>equation</u><u> </u><u>so </u><u>as </u><u>to </u><u>obtain </u><u>an </u><u>easier </u><u>one</u>
<u>Since </u><u>the </u><u>equation</u><u> </u><u>provided </u><u>isn't</u><u> </u><u>i</u><u>n</u><u> </u><u>it's</u><u> </u><u>general</u><u> </u><u>form </u><u>,</u><u> </u><u>let's</u><u> </u><u>first </u><u>convert </u><u>it </u><u>~</u>
<u>General</u><u> </u><u>form </u><u>of </u><u>a </u><u>Linear</u><u> equation</u><u> </u><u>-</u>

<u>T</u><u>he </u><u>equation</u><u> </u><u>after </u><u>getting</u><u> </u><u>converted</u><u> </u><u>will </u><u>be </u><u>as </u><u>follows</u><u> </u><u>~</u>

hope helpful ~
Answer:
Let's define the variables:
A = price of one adult ticket.
S = price of one student ticket.
We know that:
"On the first day of ticket sales the school sold 1 adult ticket and 6 student tickets for a total of $69."
1*A + 6*S = $69
"The school took in $150 on the second day by selling 7 adult tickets and student tickets"
7*A + 7*S = $150
Then we have a system of equations:
A + 6*S = $69
7*A + 7*S = $150.
To solve this, we should start by isolating one variable in one of the equations, let's isolate A in the first equation:
A = $69 - 6*S
Now let's replace this in the other equation:
7*($69 - 6*S) + 7*S = $150
Now we can solve this for S.
$483 - 42*S + 7*S = $150
$483 - 35*S = $150
$483 - $150 = 35*S
$333 = 35*S
$333/35 = S
$9.51 = S
That we could round to $9.50
That is the price of one student ticket.
Answer:
5,7
Step-by-step explanation: