<u>Answer</u>:
There are a number of lipids that are found in foods and contribute to various functions in the body. Triglycerides are the most common lipid found in food and in the body; they consist of a <u><em>Glycerol</em></u><u> </u>backbone attached to three fatty acids.
Fatty acids are classified based on the degree to which the carbon chain is saturated with <u><em>Hydrogen</em></u>
A fatty acid is <u><em>saturated </em></u>if it contains no carbon-carbon double bonds, <em><u>polyunsaturated </u></em>if it contains two or more carbon-carbon double bonds, and<em><u> monounsaturated </u></em>if it has only one carbon-carbon double bond.
The unsaturated fatty acids can exist in one of two structural forms: the <em><u>trans </u></em>form occurs when hydrogens on both carbons forming the double bond lie on opposite sides of that bond.
When hydrogens on an unsaturated fatty acid lie on the same side of the carbon-carbon double bond, a <u><em>cis </em></u>formation exists.
Answer:
<u>Passive transport</u>: It does not need any energy to occur. Happens in favor of an electrochemical gradient. Simple diffusion and facilitated diffusion are kinds of passive transport.
<u>Simple diffusion</u>: molecules freely moves through the membrane.
<u>Facilitated diffusion</u>: molecules are carried through the membrane by channel proteins or carrier proteins.
<u>Active transport</u> needs energy, which can be taken from the ATP molecule (<u>Primary active transport</u>) or from a membrane electrical potential (<u>Secondary active transport</u>).
Explanation:
- <u>Diffusion</u>: This is a pathway for some <em>small polar hydrophilic molecules</em> that can<em> freely move through the membrane</em>. Membrane´s permeability <em>depends</em> on the <em>size of the molecule</em>, the bigger the molecule is, the less capacity to cross the membrane it has. Diffusion is a very slow process and to be efficient requires short distances and <em>pronounced concentration gradients</em>. An example of diffusion is <em>osmosis</em> where water is the transported molecule.
- <u>Facilitated diffusion</u>: Refers to the transport of <em>hydrophilic molecules</em> that <em>are not able to freely cross the membrane</em>. <em>Channel protein</em> and many <em>carrier proteins</em> are in charge of this <em>passive transport</em>. If uncharged molecules need to be carried this process depends on <em>concentration gradients</em> and molecules are transported from a higher concentration side to a lower concentration side. If ions need to be transported this process depends on an <em>electrochemical gradient</em>. The <em>glucose</em> is an example of a hydrophilic protein that gets into the cell by facilitated diffusion.
<em>Simple diffusion</em> and <em>facilitated diffusion</em> are <u>passive transport</u> processes because the cell <u><em>does not need any energy</em></u> to make it happen.
- <u>Active transport</u> occurs <em>against the electrochemical gradient</em>, so <u><em>it does need energy to happen</em></u>. Molecules go from a high concentration side to a lower concentration side. This process is always in charge of <em>carrier proteins</em>. In <u>primary active transport</u> the <em>energy</em> needed <em>comes from</em> the <em>ATP</em> molecule. An example of primary active transport is the <em>Na-K bomb</em>. In <u>secondary active transport</u>, the<em> energy comes from</em> the <em>membrane electric potential</em>. Examples of secondary active transport are the carriage of <em>Na, K, Mg metallic ions</em>.
Indicates that cellulose is carbohydrates liquid
Getting tracked down by the fbi