Answer;
- rise of chemoautotrophs and photoautotrophs
- rise of cyanobacteria - a specific type of phototroph that shares homology with chloroplast genome
- rise of eukaryotes
- rise of multicellularity
- rise of bryophytes - mosses
- rise of gymnosperms - conifers, cycads & ginkgo
- rise of angiosperms - flowering plants
Explanation;
Plants are multicellular organisms that have evolved the ability to live on land. The vast majority can carry out photosynthesis, but they are not the only organisms with this ability: many protists can photosynthesize too, as can several important groups of bacteria.
Plants are thought to have evolved from a class of freshwater green algae called the charophytes. Two particular groups of charophyte, the Coleochaetales and the Charales, resemble the earliest land plants (bryophytes) in a variety of ways, including the structure of their chloroplasts and sperm cells, and the way their cells divide during mitosis .
Green algae is a representative of sponges
Organize the lengths below from shortest to longest.
28 dm ,629,000 mm ,1.2 km, 30,277 cm
To answer this, all values should be converted in the same
unit just like in km
28 dm = 0.0028 km
629,000 mm = 0.629 km
1.2 km
30,277 cm = 0.30277 km
So the order is 28 dm, 30,277 cm , 629,000 mm and 1.2 km
Answer:
b. the use of DNA as the information storage molecule
Explanation:
Prokaryotic cells are the ones that lack the membrane-bound organelles and well-defined nucleus. Eukaryotic cells have the nucleus and other membrane-bound organelles. Most of the prokaryotic cells are smaller in size as compared to eukaryotic cells. Despite these differences, both prokaryotic and eukaryotic cells have DNA as their genetic material. DNA serves to store genetic information in both types of cells.