<u></u><u>The correct answer is 47.5%, or 0.475.</u>
Explanation:
The empirical rule states that in any normal distribution:
68% of data will fall within 1 standard deviation of the mean;
95% of data will fall within 2 standard deviations of the mean; and
99.7% of data will fall within 3 standard deviations of the mean.
The mean is 500 and the standard deviation is 100. This means that 700 is 2 standard deviations away from the mean:
(700-500)/100=200/100=2.
We know that 95% of data will fall within 2 standard deviations from the mean. However, included in the 95% is data less than the mean and greater than the mean. Since we are only concerned with the scores from 500 to 700, we only want the half that is greater than the mean:
95/2 = 47.5%, or 0.475.
OK, so the graph is a parabola, with points x=0,y=0; x=6,y=-9; and x=12,y=0
Because the roots of the equation are 0 and 12, we know the formula is therefore of the form
y = ax(x - 12), for some a
So put in x = 6
-9 = 6a(-6)
9 = 36a
a = 1/4
So the parabola has a curve y = x(x-12) / 4, which can also be written y = 0.25x² - 3x
The gradient of this is dy/dx = 0.5x - 3
The key property of a parabolic dish is that it focuses radio waves travelling parallel to the y axis to a single point. So we should arrive at the same focal point no matter what point we chose to look at. So we can pick any point we like - e.g. the point x = 4, y = -8
Gradient of the parabolic mirror at x = 4 is -1
So the gradient of the normal to the mirror at x = 4 is therefore 1.
Radio waves initially travelling vertically downwards are reflected about the normal - which has a gradient of 1, so they're reflected so that they are travelling horizontally. So they arrive parallel to the y axis, and leave parallel to the x axis.
So the focal point is at y = -8, i.e. 1 metre above the back of the dish.
Answer:
∠ b = 23°
Step-by-step explanation:
Complementary angles sum to 90° , then
a + b = 90° , that is
67° + b = 90° ( subtract 67° from both sides )
∠ b = 23°