Answer:

Step-by-step explanation:
![\displaystyle = \frac{x^2(y-2)}{3y} \\\\Put \ x = 3, \ y = -1\\\\= \frac{(3)^2(-1-2)}{3(-1)}\\\\= \frac{9(-3)}{-3} \\\\= 9 \\\\ \rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%3D%20%5Cfrac%7Bx%5E2%28y-2%29%7D%7B3y%7D%20%5C%5C%5C%5CPut%20%5C%20x%20%3D%203%2C%20%5C%20y%20%3D%20-1%5C%5C%5C%5C%3D%20%5Cfrac%7B%283%29%5E2%28-1-2%29%7D%7B3%28-1%29%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B9%28-3%29%7D%7B-3%7D%20%5C%5C%5C%5C%3D%209%20%5C%5C%5C%5C%20%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3><h3>Peace!</h3>
Answer:
Exact form: 8
Decimal form: 13.45434264......
Hoped I Helped
To find the perimeter of a rectangle, we can use this formula:

Where L is the length and W is the width.
We know the perimeter and we know the length and we want to find the width.
Substitute the values back into the formula.
2(35) + 2W = 84
70 + 2W = 84
2W = 14 <-- Subtract both sides by 70
W = 7 <-- Divide both sides by 2
So, width is 7 meters long.
I'm just guessing but maybe expressions