4^0=1
1-1=0
10*0=0
since when something is brought to the power of 0, it equals 1. Then when put into the equation the brackets = 0 therefore the whole equation equals 0
Answer:
2x^3 + 9 (if you meant the x to be multiplication)
2x^3 + 9x (if you meant the x to be a variable)
Step-by-step explanation:
Hope this helps!
brainliest?
(::)
A)
y varies inversely as (x-1).
Implies y α 1/(x -1)
y = k/(x-1). Where k is constant of proportionality.
y*(x - 1) = k
when y = 12, x = 1/2
12*(1/2 - 1) = k
12*(0.5 - 1) = k
k = 12*(-0.5) = -6.
k = -6.
Equation connecting x and y
y*(x - 1) = k, recall k = -6
y*(x - 1) = -6
b)
when x = a.
y*(x - 1) = -6
y*(a - 1) = -6
y = -6 / (a -1)
when x = 2a.
y*(2a - 1) = -6
y = -6 / (2a -1)
Difference in y is 1.8
-6 / (2a -1) - -6/(a - 1) = 1.8
-6 / (2a -1) + 6/(a - 1) = 1.8
6 / (a -1) - 6 /(2a -1) = 1.8
6( 1/(a-1) - 1/(2a - 1)) = 1.8
1/(a-1) - 1/(2a - 1) = 1.8/6
1/(a-1) - 1/(2a - 1) = 0.3
((2a - 1) - (a - 1)) / ((a-1)(2a -1)) = 0.3
(2a - 1 -a + 1) /((a-1)(2a -1)) = 0.3
a / (2a² - 3a + 1) = 0.3
a/0.3 = 2a² - 3a + 1
10a/3 = 2a² - 3a + 1
2a² - 3a + 1 = 10a/3
2a² - 3a -10a/3 + 1 = 0
2a² - 19a/3 + 1 = 0
6a² - 19a + 3 = 0
This is a quadratic expression which can be factored.
6a² - 18a - a + 3 = 0
6a(a - 3) - 1(a - 3) = 0
(6a - 1)(a - 3) = 0
6a - 1 = 0 a = 1/6
a - 3 = 0 a = 3.
a = 3 or 1/6
Since a is positive integer, a = 3 only.
1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg