let's firstly convert the mixed fraction to improper fraction, and then divide.
![\bf \stackrel{mixed}{11\frac{1}{2}}\implies \cfrac{11\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{23}{2}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{23}{2}\div \cfrac{3}{4}\implies \cfrac{23}{2}\cdot \cfrac{4}{3}\implies \cfrac{23}{3}\cdot \cfrac{4}{2}\implies \cfrac{23}{3}\cdot 2\implies \cfrac{46}{3}\implies 15\frac{1}{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B11%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B11%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B23%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B23%7D%7B2%7D%5Cdiv%20%5Ccfrac%7B3%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B23%7D%7B2%7D%5Ccdot%20%5Ccfrac%7B4%7D%7B3%7D%5Cimplies%20%5Ccfrac%7B23%7D%7B3%7D%5Ccdot%20%5Ccfrac%7B4%7D%7B2%7D%5Cimplies%20%5Ccfrac%7B23%7D%7B3%7D%5Ccdot%202%5Cimplies%20%5Ccfrac%7B46%7D%7B3%7D%5Cimplies%2015%5Cfrac%7B1%7D%7B3%7D)
Taking

and differentiating both sides with respect to

yields
![\dfrac{\mathrm d}{\mathrm dx}\bigg[3x^2+y^2\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[7\bigg]\implies 6x+2y\dfrac{\mathrm dy}{\mathrm dx}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B3x%5E2%2By%5E2%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B7%5Cbigg%5D%5Cimplies%206x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D0)
Solving for the first derivative, we have

Differentiating again gives
![\dfrac{\mathrm d}{\mathrm dx}\bigg[6x+2y\dfrac{\mathrm dy}{\mathrm dx}\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[0\bigg]\implies 6+2\left(\dfrac{\mathrm dy}{\mathrm dx}\right)^2+2y\dfrac{\mathrm d^2y}{\mathrm dx^2}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B6x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B0%5Cbigg%5D%5Cimplies%206%2B2%5Cleft%28%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cright%29%5E2%2B2y%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D0)
Solving for the second derivative, we have

Now, when

and

, we have
Answer:
x - 9
Step-by-step explanation:
In this case, "simplify" directs that you 1) carry out the indicated multiplication and 2) combine like terms.
-3(x+3)+4x = -3x - 9 + 4x = x - 9
Answer:
I think its 5
Step-by-step explanation:
Answer:
While both types of interest will grow your money over time, there is a big difference between the two. Specifically, simple interest is only paid on principal, while compound interest is paid on the principal plus all of the interest that has previously been earned.