Answer:

Explanation:
First we have to find the time required for train to travel 60 meters and impact the car, this is an uniform linear motion:

The reaction time of the driver before starting to accelerate was 0.50 seconds. So, remaining time for driver is 1.5 seconds.
Now, we have to calculate the distance traveled for the driver in this 0.5 seconds before he start to accelerate. Again, is an uniform linear motion:

The driver cover 10 meters in this 0.5 seconds. So, the remaining distance to be cover in 1.5 seconds by the driver are 35 meters. We calculate the minimum acceleration required by the car in order to cross the tracks before the train arrive, Since this is an uniformly accelerated motion, we use the following equation:

Answer:
Therefore the correct statement is B.
Explanation:
In the interference and diffraction phenomena, the natural wave of electromagnetic radiation must be taken into account, the wave front that advances towards the slit can be considered as when it reaches it behaves like a series of wave emitters, each slightly out of phase from the previous one, following the Huygens principle that states that each point is compiled as a source of secondary waves.
The sum of all these waves results in the diffraction curve of the slit that has the shape
I = Io sin² θ /θ²
Where the angle is a function of the wavelength and the width of the slit.
From the above, the interference phenomenon can be treated as the sum of two diffraction phenomena displaced a distance equal to the separation of the slits (d)
Therefore the correct statement is B
I do not know what the school expects as an answer, but advantage of reflecting telescopes is that there is only one major reflecting surface, so it is quite easy to create a 6 or 8 inch telescope by an amateur, after adding on a prism and an eyepiece. (a microscope eyepiece could be used).
MY answer would be "easier to build". (it still takes tens of hours to grind and polish the single plane surface to a parabolic surface).
Electromagnetic waves all have the same velocity in the same medium. However, since frequencies vary widely, so do wavelengths.
Inertia is the force in play here