1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
2 years ago
11

An Atwood machine consists of a mass of 3.5 kg connected by a light string to a mass of 6.0 kg over a frictionless pulley with a

moment of inertia of 0.0352 kg m2 and a radius of 12.5 cm. If the system is released from rest, what is the speed of the masses after they have moved through 1.25 m if the string does not slip on the pulley?
Please note: the professor has told us that the correct answer is 2.3 m/s. how does one arrive at this answer?
Physics
1 answer:
Andreas93 [3]2 years ago
8 0

Answer:

v=2.28m/s

Explanation:

For the first mass we have m_1=3.5kg, and for the second m_2=6.0kg. The pulley has a moment of intertia I_p=0.0352kgm^2 and a radius r_p=0.125m.

We solve this with conservation of energy.  The initial and final states in this case, where no mechanical energy is lost, must comply that:

K_i+U_i=K_f+U_f

Where K is the kinetic energy and U the gravitational potential energy.

We can write this as:

K_f+U_f-(K_i+U_i)=(K_f-K_i)+(U_f-U_i)=0J

Initially we depart from rest so K_i=0J, while in the final state we will have both masses moving at velocity <em>v</em> and the tangential velocity of the pully will be also <em>v</em> since it's all connected by the string, so we have:

K_f=\frac{m_1v^2}{2}+\frac{m_2v^2}{2}+\frac{I_p\omega_p^2}{2}=(m_1+m_2+\frac{I_p}{r_p^2})\frac{v^2}{2}

where we have used the rotational kinetic energy formula and that v=r\omega

For the gravitational potential energy part we will have:

U_f-U_i=m_1gh_{1f}+m_2gh_{2f}-(m_1gh_{1i}+m_2gh_{2i})=m_1g(h_{1f}-h_{1i})+m_2g(h_{2f}-h_{2i})

We don't know the final and initial heights of the masses, but since the heavier, m_2, will go down and the lighter, m_1, up, both by the same magnitude <em>h=1.25m </em>(since they are connected) we know that h_{1f}-h_{1i}=h and h_{2f}-h_{2i}=-h, so we can write:

U_f-U_i=m_1gh-m_2gh=gh(m_1-m_2)

Putting all together we have:

(K_f-K_i)+(U_f-U_i)=(m_1+m_2+\frac{I_p}{r_p^2})\frac{v^2}{2}+gh(m_1-m_2)=0J

Which means:

v=\sqrt{\frac{2gh(m_2-m_1)}{m_1+m_2+\frac{I_p}{r_p^2}}}=\sqrt{\frac{2(9.8m/s^2)(1.25m)(6.0kg-3.5kg)}{3.5kg+6.0kg+\frac{0.0352kgm^2}{(0.125m)^2}}}=2.28m/s

You might be interested in
In the phenomenon known as the photoelectric effect, electric current will flow when light shines on certain substances.
svetlana [45]
The answer is true...............
8 0
2 years ago
Read 2 more answers
1. A carbon atom contains 6 protons and 6 electrons. In order for the carbon atom to become
jek_recluse [69]
It must gain an electron because if the proton number was to change it would no longer be the same element.
5 0
3 years ago
A 4-kg toy car with a speed of 5 m/s collides head-on with a stationary 1-kg car. After the collision, the cars are locked toget
mihalych1998 [28]

Kinetic energy lost in collision is 10 J.

<u>Explanation:</u>

Given,

Mass, m_{1} = 4 kg

Speed, v_{1} = 5 m/s

m_{2} = 1 kg

v_{2} = 0

Speed after collision = 4 m/s

Kinetic energy lost, K×E = ?

During collision, momentum is conserved.

Before collision, the kinetic energy is

\frac{1}{2} m1 (v1)^2 + \frac{1}{2} m2(v2)^2

By plugging in the values we get,

KE = \frac{1}{2} * 4 * (5)^2 + \frac{1}{2} * 1 * (0)^2\\\\KE = \frac{1}{2} * 4 * 25 + 0\\\\

K×E = 50 J

Therefore, kinetic energy before collision is 50 J

Kinetic energy after collision:

KE = \frac{1}{2} (4 + 1) * (4)^2 + KE(lost)

KE = 40J + KE(lost)

Since,

Initial Kinetic energy = Final kinetic energy

50 J = 40 J + K×E(lost)

K×E(lost) = 50 J - 40 J

K×E(lost) = 10 J

Therefore, kinetic energy lost in collision is 10 J.

4 0
3 years ago
PSYCHOLOGY! A _________ is a graphical representation of association between variables.
pshichka [43]

Answer:

A. Scatterplot

Explanation:

because it is

5 0
2 years ago
Read 2 more answers
1. What is the wavelength of a sound wave with a frequency of 50 Hz, if the Speed of sound is 343 m/s.
marshall27 [118]

1.6.86

2.59.04

3.3

Thats the answer I think

7 0
2 years ago
Other questions:
  • How do butterfly dest on there wings
    14·1 answer
  • A(n)________is a substance that is made up of a single kind of atom.
    9·1 answer
  • Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released qu
    8·1 answer
  • An advantage of the clinical method is that is
    13·1 answer
  • If a body with a mass of 4 kg is moved by a force of 20 N, what is the rate of its acceleration?​
    9·1 answer
  • Help me with number 28.
    5·1 answer
  • What is the avarage velocity of a car that travels 30 kilometers due west in 0.5 hours
    13·2 answers
  • A rock of mass M with a density twice that of water is sitting on the bottom of an aquarium tank filled with water. The normal f
    5·1 answer
  • How much work is required to make a 1400 kg car increase its speed from 10 m/s to 20 m/s?
    9·1 answer
  • What is the medium of the wave shown in the photograph?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!