1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
3 years ago
11

An Atwood machine consists of a mass of 3.5 kg connected by a light string to a mass of 6.0 kg over a frictionless pulley with a

moment of inertia of 0.0352 kg m2 and a radius of 12.5 cm. If the system is released from rest, what is the speed of the masses after they have moved through 1.25 m if the string does not slip on the pulley?
Please note: the professor has told us that the correct answer is 2.3 m/s. how does one arrive at this answer?
Physics
1 answer:
Andreas93 [3]3 years ago
8 0

Answer:

v=2.28m/s

Explanation:

For the first mass we have m_1=3.5kg, and for the second m_2=6.0kg. The pulley has a moment of intertia I_p=0.0352kgm^2 and a radius r_p=0.125m.

We solve this with conservation of energy.  The initial and final states in this case, where no mechanical energy is lost, must comply that:

K_i+U_i=K_f+U_f

Where K is the kinetic energy and U the gravitational potential energy.

We can write this as:

K_f+U_f-(K_i+U_i)=(K_f-K_i)+(U_f-U_i)=0J

Initially we depart from rest so K_i=0J, while in the final state we will have both masses moving at velocity <em>v</em> and the tangential velocity of the pully will be also <em>v</em> since it's all connected by the string, so we have:

K_f=\frac{m_1v^2}{2}+\frac{m_2v^2}{2}+\frac{I_p\omega_p^2}{2}=(m_1+m_2+\frac{I_p}{r_p^2})\frac{v^2}{2}

where we have used the rotational kinetic energy formula and that v=r\omega

For the gravitational potential energy part we will have:

U_f-U_i=m_1gh_{1f}+m_2gh_{2f}-(m_1gh_{1i}+m_2gh_{2i})=m_1g(h_{1f}-h_{1i})+m_2g(h_{2f}-h_{2i})

We don't know the final and initial heights of the masses, but since the heavier, m_2, will go down and the lighter, m_1, up, both by the same magnitude <em>h=1.25m </em>(since they are connected) we know that h_{1f}-h_{1i}=h and h_{2f}-h_{2i}=-h, so we can write:

U_f-U_i=m_1gh-m_2gh=gh(m_1-m_2)

Putting all together we have:

(K_f-K_i)+(U_f-U_i)=(m_1+m_2+\frac{I_p}{r_p^2})\frac{v^2}{2}+gh(m_1-m_2)=0J

Which means:

v=\sqrt{\frac{2gh(m_2-m_1)}{m_1+m_2+\frac{I_p}{r_p^2}}}=\sqrt{\frac{2(9.8m/s^2)(1.25m)(6.0kg-3.5kg)}{3.5kg+6.0kg+\frac{0.0352kgm^2}{(0.125m)^2}}}=2.28m/s

You might be interested in
What are some of the physical benefits to be derived from aerobic
VladimirAG [237]
Some of the benefits are increased heart muscles, increase in blood flow, and reduced body fat
6 0
3 years ago
5kg of copper ball and I kg of water are at the same temperature of 31 C. Which
blagie [28]

Answer:

r

Explanation:

8 0
3 years ago
A stone is dropped from a cliff. What will be its speed when it was fallen 100 m?
Mars2501 [29]

Answer:

final velocity will be44.72m/s

Explanation:

HEIGHT=h=100m

vi=0m/s

vf=?

g=10m/s²

by using third equation of motion for bodies under gravity

2gh=(vf)²-(vi)²

evaluating the formula

2(10m/s²)(100m)=vf²-(0m/s)²

2000m²/s²=vf²

√2000m²/s²=√vf²

44.72m/s=vf

6 0
3 years ago
Read 2 more answers
Sound waves are mechanical waves in which the particles in the medium vibrate in a direction parallel to the direction of energy
ch4aika [34]

C longitudnal waves

4 0
3 years ago
Read 2 more answers
si se deja caer un carrito desde el punto mas alto de ua psta de coches cuya altura es de 1.4m cual es la velocidad maxima que p
forsale [732]

Answer:

v = 5.24[m/s]

Explanation:

Este problema se puede resolver por medio del principio de la conservación de la energía, donde la energía potencial es igual a la energía cinética. Es decir a medida que el carrito desciende su energía potencial disminuye, pero su energía cinética aumenta.

E_{kin}=E_{pot}

Donde:

E_{kin}=\frac{1}{2} *m*v^{2} \\\\E_{pot}=m*g*h

Ahora reemplazando:

\frac{1}{2} *m*v^{2}=m*g*h\\\\0.5*v^{2}=9.81*1.4\\v=\sqrt{\frac{9.81*1.4}{0.5} }   \\\\v=5.24[m/s]

6 0
3 years ago
Other questions:
  • Where are all stars bornWhat is the brightest star in the night sky? What is its magnitude?
    14·1 answer
  • an object with a mass of 2.0 kg is accelerated at 5.0 m/s/s what is the net force that causes this acceleration
    8·1 answer
  • How do find the force of buoyancy ​
    12·1 answer
  • A 75.0-kg painter climbs a ladder that is 2.75 m long leaning against a vertical wall. The ladder makes a 30.0° angle with the w
    14·2 answers
  • Please help!!
    9·2 answers
  • In a skating stunt known as "crack-the-whip," a number of skaters hold hands and form a straight line. They try to skate so that
    14·1 answer
  • Ms. PB is pushing Mr. Rigney in a wheelchair with a force of 10 N East, while Mr. Rigney is using his arms to
    9·1 answer
  • A ball is thrown horizontally from a 16 m -high building with a speed of 2.0 m/s .
    8·1 answer
  • Kjebhg da sad bmm m mmm b bc f gaf see Krio ok pop it ya ta is v BSA u lie lug
    15·1 answer
  • 전기를 사용하여 다른 재료에 원하는 금속 층을 증착하는 과정을 ____라고 합니다.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!