Answer:
15448
Explanation:
Compounded Quarterly:
A=P\left(1+\frac{r}{n}\right)^{nt}
A=P(1+
n
r
)
nt
Compound interest formula
P=11000\hspace{35px}r=0.057\hspace{35px}t=6\hspace{35px}n=4
P=11000r=0.057t=6n=4
Given values
A=11000\left(1+\frac{0.057}{4}\right)^{4(6)}
A=11000(1+
4
0.057
)
4(6)
Plug in values
A=11000(1.01425)^{24}
A=11000(1.01425)
24
Simplify
A=15448.0290759
A=15448.0290759
Use calculator
Answer: 
Explanation:
We can solve this with the Law of Universal Gravitation and knowing the acceleration due gravity
of an object above the surface of the planet decreases with the distance (height) of this object from the center of the planet.
Well, according to the law of universal gravitation:
(1)
Where:
is the module of the force exerted between both bodies
is the gravitational constant
is the mass of the Earth
are the mass of each communications satellite
is the distance between the center of the Earth and the satellite
is the radius of the Earth
is the height of the satellite, measured from the Earth's surface
On the other hand, we know according to <u>Newton's 2nd law of motion:</u>
(2)
Combining (1) and (2):
(3)
Isolating
:
(4)
Remembering
:
(5)
Finally:
Answer:
0.775 m
Explanation:
As the car collides with the bumper, all the kinetic energy of the car (K) is converted into elastic potential energy of the bumper (U):

where we have
is the spring constant of the bumper
x is the maximum compression of the bumper
is the mass of the car
is the speed of the car
Solving for x, we find the maximum compression of the spring:
