There are a number of properties that both sugar and salt share. First would be that both compounds exist as solid at standard temperature and pressure. Being in a solid form, they also have crystalline structures, colorless and are odorless. Also, from research, both has certain degree of antimicrobial properties as they are being used for preservation of food products and for treating of wounds and illnesses. Another would be that both are being used as flavor enhancers in cooking. Due to their applicability, these compounds are the two of the major production industries in many countries across the globe.
Answer: they all relate to eachother
Explanation: every star every planet every sun its hard to belive they relate
to eachother but only becuase there in the same UNIVERSE
Charles law gives the relationship between volume and temperature of gas.
It states that at constant pressure volume is directly proportional to temperature
Therefore
V/ T = k
Where V - volume T - temperature in kelvin and k - constant
V1/T1 = V2/T2
Parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
Substituting the values in the equation
267 L/ 480 K = V / 750 K
V = 417 L
Final volume is 417 L
Answer:
ΔH°f(C₈H₁₈(g)) = -210.9 kJ/mol
Explanation:
Let's consider the combustion of C₈H₁₈.
C₈H₁₈(g) + 25/2 O₂(g) ⟶ 8 CO₂(g) + 9 H₂O(g) ΔH°rxn = − 5113.3 kJ
We can calculate the standard enthalpy of formation of C₈H₁₈(g) using the following expression.
ΔH°rxn = 8 mol × ΔH°f(CO₂(g)) + 9 mol × ΔH°f(H₂O(g)) - 1 mol × ΔH°f(C₈H₁₈(g)) - 25/2 mol × ΔH°f(O₂(g))
1 mol × ΔH°f(C₈H₁₈(g)) = 8 mol × ΔH°f(CO₂(g)) + 9 mol × ΔH°f(H₂O(g)) - 25/2 mol × ΔH°f(O₂(g)) - ΔH°rxn
1 mol × ΔH°f(C₈H₁₈(g)) = 8 mol × (-393.5 kJ/mol) + 9 mol × (-241.8 kJ/mol) - 25/2 mol × 0 kJ/mol - (− 5113.3 kJ)
ΔH°f(C₈H₁₈(g)) = -210.9 kJ/mol
U need positive and negative electordoe and an electrolyte <span />