<span>The electron transport process makes water and ATP and is sometimes called Oxidative phosphorylation because it requires oxygen.</span>
The limiting reactant when 5.6 moles of aluminium react with 6.2 moles of water is
water( H2O)
<u><em>Explanation</em></u>
The balanced equation is as below
2 Al +3 H2O → Al2O3 +3 H2
The mole ratio of Al :Al2O3 is 2:1 therefore the moles of Al2O3
= 5.6 x1/2 = 2.8 moles
The mole ratio of H2O: Al2O3 is 3:1 therefore the moles of Al2O3 produced
= 6.2 x1/3= 2.067 moles
since H2O yield less amount of Al2O3 , H2O is the limiting reagent.
Option (a) is correct.
A reducing agent is the one which loses electrons to other substance and an oxidizing agent is one which accepts electrons.
Here, In

, Cr has oxidation number 6+ in the L.H.S of the equation, but on R.H.S its oxidation number is 0 i.e. it Cr has gained electrons such that total charge is 0.
And the oxidation state of Al in the left-hand side of equation is 0 and in right-hand side, it is +6.i.e. it has donated its electrons to Cr.
Hence, Cr is the oxidizing agent and Al is the reducing agent.
Answer:
The system gains 126100 J
Explanation:
The heat can be calculated by the equation:
Q = nxCxΔT, where Q is the heat, C is the heat capacity,n is the number of moles and ΔT is the variation of temperature (final - initial). The number of moles is the mass divided by the molar mass, so:
n = 250/4 = 62.5 mol.
The system must be in thermal equilibrium with the surroundings, so if the temperature of the surroundings decreased 97 K, the temperature of the system increased by 97 K, so ΔT = 97 K
Q = 62.5x20.8x97
Q = 126100 J
double replacesment and 1,14,12,6