Answer : The molal freezing point depression constant of X is
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of X liquid (solvent) = 450.0 g
Molar mass of urea = 60 g/mole
Formula used :
where,
= change in freezing point
= freezing point of solution =
= freezing point of liquid X=
i = Van't Hoff factor = 1 (for non-electrolyte)
= molal freezing point depression constant of X = ?
m = molality
Now put all the given values in this formula, we get
Therefore, the molal freezing point depression constant of X is
Answer:
The elements in each group have the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons. They are the electrons involved in chemical bonds with other elements. Every element in the first column (group one) has one electron in its outer shell.
Explanation:
<h3>
Answer:</h3>
0.012 dekameters (dkm)
<h3>
Explanation:</h3>
<u>We are given;</u>
Required to identify the measurements that is not equivalent to 120 cm.
- Centimeters are units that are used to measure length together with other units such as kilometers(km), meters (m), millimeters (mm), dekameters (dkm), etc.
- These units can be inter-converted to one another using suitable conversion factors.
- To do this, we are going to have a table showing the suitable conversion factor from one unit to another.
Kilometer (km)
10
Decimeter (Dm)
10
Hectometer (Hm)\
10
Meter (m)
10
Dekameter (dkm)
10
Centimeter (cm)
10
Millimeter (mm)
Therefore;
To convert cm to km
Conversion factor is 10^5 cm/km
Thus;
120 cm = 120 cm ÷ 10^5 cm/km
= 0.0012 km
To convert cm to dkm
Conversion factor is 10 cm/dkm
Therefore,
120 cm = 120 cm ÷ 10 cm/dkm
= 12 dkm
To convert cm to m
The suitable conversion factor is 10^2 cm/m
Thus,
120 cm = 120 cm ÷ 10^2 cm/m
= 1.2 m
To convert cm to mm
Suitable conversion factor is 10 mm/cm
Therefore;
120 cm = 120 cm × 10 mm/cm
= 1200 mm
Therefore, the measurement that is not equal to 120 cm is 0.012 dkm
The answer would be A) cells!!
Answer:
Explanation:
A combustion involves the reaction of a fuel with oxygen (O₂). During the reaction of combustion of hydrogen (H₂), H₂ reacts with O₂ to form water (H₂O). The <em>balanced chemical equation</em> is the following:
2 H₂(g) + O₂(g) → 2 H₂O(g)
According to the chemical equation, 2 moles of H₂O are obtained from the reaction of 2 moles of H₂ with 1 mol of O₂. All reactants and products are in the gaseous phase.