Answer:
168°C is the melting point of your impure sample.
Explanation:
Melting point of pure camphor= T =179°C
Melting point of sample =
= ?
Depression in freezing point = 
Depression in freezing point is also given by formula:

= The freezing point depression constant
m = molality of the sample = 0.275 mol/kg
i = van't Hoff factor
We have:
= 40°C kg/mol
i = 1 ( non electrolyte)




168°C is the melting point of your impure sample.
In balanced equation there are same number of atoms in each element on both sides of the equation. unbalanced equation is when there are different number of atoms in each element on the both sides
Answer:
2MnO₄⁻ + 5Zn + 16H⁺ → 2Mn²⁺ + 8H₂O + 5Zn²⁺
Explanation:
To balance a redox reaction in an acidic medium, we simply follow some rules:
- Split the reaction into an oxidation and reduction half.
- By inspecting, balance the half equations with respect to the charges and atoms.
- In acidic medium, one atom of H₂O is used to balance up each oxygen atom and one H⁺ balances up each hydrogen atom on the deficient side of the equation.
- Use electrons to balance the charges. Add the appropriate numbers of electrons the side with more charge and obtain a uniform charge on both sides.
- Multiply both equations with appropriate factors to balance the electrons in the two half equations.
- Add up the balanced half equations and cancel out any specie that occur on both sides.
- Check to see if the charge and atoms are balanced.
Solution
Zn + MnO₄⁻ → Zn²⁺ + Mn²⁺
The half equations:
Zn → Zn²⁺ Oxidation half
MnO₄⁻ → Mn²⁺ Reduction half
Balancing of atoms(in acidic medium)
Zn → Zn²⁺
MnO₄⁻ + 8H⁺ → Mn²⁺ + 4H₂O
Balancing of charge
Zn → Zn²⁺ + 2e⁻
MnO₄⁻ + 8H⁺ + 5e⁻→ Mn²⁺ + 4H₂O
Balancing of electrons
Multiply the oxidation half by 5 and reduction half by 2:
5Zn → 5Zn²⁺ + 10e⁻
2MnO₄⁻ + 16H⁺ + 10e⁻→ 2Mn²⁺ + 8H₂O
Adding up the two equations gives:
5Zn + 2MnO₄⁻ + 16H⁺ + 10e⁻ → 5Zn²⁺ + 10e⁻ + 2Mn²⁺ + 8H₂O
The net equation gives:
5Zn + 2MnO₄⁻ + 16H⁺ → 5Zn²⁺ + 2Mn²⁺ + 8H₂O
Answer:
Lewis acid- Fe3+
Lewis base- water molecule
Explanation:
Acids and bases have been defined in diverse ways. There have been definitions put forward by Arrhenius, Brownstead and Lowry as well as Lewis. Each definition his useful in its own way.
Lewis acids are lone pair acceptors such as metal ions. This implies that in the particular instance of this reaction, Fe3+ is the lewis acid.
Similarly, a Lewis base is a lone pair donor, all ligands are lone pair donors since they donate one or more lone pairs of electrons to Lewis acids. In the particular instance of this reaction, the Lewis base is the water molecule.