Answer:
Explanation:
Given:
V1 = 200 ml
T1 = 20 °C
= 20 + 273
= 293 K
P1 = 3 atm
P2 = 2 atm
V2 = 400 ml
Using ideal gas equation,
P1 × V1/T1 = P2 × V2/T2
T2 = (2 × 400 × 293)/200 × 3
= 234400/600
= 390.67 K
= 390.67 - 273
= 117.67 °C
Answer:
C Group 11
Explanation:
Group 11, by modern IUPAC numbering, is a group of chemical elements in the periodic table, consisting of copper (Cu), silver (Ag), and gold (Au).
These elements show highest electrical conductivity.
To find pH, use the following formula ---> pH= - log [H+]
so first we need to calculate the [H+] concentration using the OH concentration. to do this, we need to use this formula--> 1.0x10-14= [H+] X [OH-], so we solve for H+ and plug in
[H+]= 1.0X10-14/[OH-]---> 1.0 x 10-14/ 1.0 x 10-4= 1.0 x 10-10
now that we have the H+ concentration, we can solve of pH
pH= -log (1.0x10-10)= 10
answer is A
You can put a known amount sodium into some sort of time release mechanism such as a pill made from soluble material. Then you can place the sodium into a calorimeter with a known mass of water and record the temperature change the water undergoes during the reaction. Then you can use the equation q(water)=m(water)c(water)ΔT to find the amount of heat absorbed by the water. since the amount of heat absorbed by the water is the amount of heat released from the sodium, q(sodium)=-q(water). Than you can use the equation q(sodium)=m(sodium)c(sodium)ΔT and solve for c(sodium)
I hope this helps and feel free to ask about anything that was unclear in the comments.