Answer:
Sabemos que:

y tenemos que:

Con esto podemos encontrar el valor de a:
8*a/(a+ 4) = 6
8*a = 6*(a + 4) = 6*a + 24
8a - 6a = 24
2a = 24
a = 24/2 = 12.
Tambien sabemos que:

Y de ahí podemos despejar b:
(16*b)/(b + 8) = 12
16*b = 12*(b + 8) = 12b + 96
16b - 12b = 96
4b = 96
b = 96/4 = 24
Entonces tenemos a = 12 y b = 24, y el MH de a y b es:
MH(12,24) = 2*12*24/(12 + 24) = 24*24/36 = 16
Answer:
2x^2+3x+1
Step-by-step explanation:
FOIL
Answer: Graph B
=====================================================
Explanation:
Point A appears to be at (2.5, -1)
If we shift 6 units to the left, then we subtract 6 from the x coordinate. So the new x coordinate is now 2.5-6 = -3.5
If we shift 4 units up, then we add 4 to the y coordinate to go from -1 to -1+4 = 3
Overall, the point A(2.5, -1) moves to A'(-3.5, 3)
Graph B is the answer because of this. The other points B and C will follow the same pattern as point A does.