9514 1404 393
Answer:
72
Step-by-step explanation:
The triangles are said to be similar. (ΔNPQ ~ ΔRSQ) That means corresponding sides have the same ratio:
NP/RS = NQ/RQ = PQ/SQ = 24/32 = 21/28 = 3/4
This ratio, or scale factor, also applies to the perimeters of the two triangles.
perimeter NPQ / perimeter RSQ = 3/4
Using the given expressions for the perimeters, we have ...
(7x +2)/(10x -4) = 3/4
We can solve this equation in the usual way to find the value of x. Then we can use that value to find the perimeter of ΔNPQ.
4(7x +2) = 3(10x -4) . . . . . multiply both sides by 4(10x -4)
28x +8 = 30x -12 . . . . . eliminate parentheses
20 = 2x . . . . . . . . . . . add 12-28x to both sides
10 = x . . . . . . . . . . . divide both sides by 10
The perimeter of ΔNPQ is ...
7x +2 = 7(10) +2 = 72
The perimeter of triangle NPQ is 72 units.
Answer:
-1/2
Step-by-step explanation:
In a linear relationship, the rate of change of one variable with respect to the other is <em>constant</em>. When we talk about <em>change</em>, we're looking for a <em>difference</em> of values.
If we look at the first and second rows, the change in x is 1 - (-1) = 2, while the change in y is 9 - 10 = -1. Usually we refer to these changes as Δx and Δy (read like "delta-x" and "delta-y"), and the <em>rate of change </em>is the number we get by dividing one of these by the other.
The rate of change we're used to seeing, sometimes called the <em>slope</em>, is Δy/Δx. So, using the values we've already found:
Question 42 is B because I did the math