It would be x^+_6+2 and i think that would be it
8. You would take 48 (white tiles) then divide it by 6 to get 8. (Grey tiles)
First, let's put the second equation, <span>x-2.23y+10.34=0, in terms of y:
x - 2.23y +10.34 = 0
2.23y = x + 10.34
y = .45x + 4.64
Now we can substitute the right side of this equation for y in the first equation
</span><span>y=2x^2+8x
.45x + 4.64 = 2x^2 + 8x
Turn it into a quadratic by getting 0 on one side:
2x^2 + 8x - .45x - 4.64 = 0
2x^2 + 7.55x - 4.64 = 0 Divide both sides by 2
x^2 + 3.76x - 2.32 = 0
x =( -b +/- </span>√(b² - 4ac) ) / 2a
x =( -3.76 +/- √(14.14 + 9.28)) ÷ 2
x = .54 or -4.31
Plug the x values into y = .45x + 4.64
y = .45 (.54) + 4.64
y = 4.88 when x= .54
y = .45 (-4.31) + 4.64
y = 2.70 when x= -4.31
Solution set:
{ (0.54, 4.88) , (-4.31, 2.70) }
Answer: 40
Step-by-step explanation:
3x-10=x+70
3x-x=70+10
2x=80
x=8<u>0</u>
2
x=40
Answer: A (2,5)
Step-by-step explanation: Remove Parenthesis
y = 3 (2) - 1
Simplify 3 (2) - 1
Multiply 3 by 2
y = 6 - 1
Subtract 1 from 6
y = 5
Use the x and y values to from the ordered pair.
(2,5)