Answer:
Aluminum lodide - 680 degrees
fructose- 824 degrees
potassium bromide- 2,615 degrees
calcium bromide 3, 515 degrees
lowest boiling point is 680 and highest is 3,515.
hope this helps:)
Answer:
The wavelength for the transition from n = 4 to n = 2 is<u> 486nm</u> and the name name given to the spectroscopic series belongs to <u>The Balmer series.</u>
Explanation
lets calculate -
Rydberg equation- 
where ,
is wavelength , R is Rydberg constant (
),
and
are the quantum numbers of the energy levels. (where
)
Now putting the given values in the equation,


Wavelength 
=
= 486nm
<u> Therefore , the wavelength is 486nm and it belongs to The Balmer series.</u>
Answer: (a) The reaction mixture will proceed toward products.
Explanation:
Equilibrium constant is defined as the ratio of pressure of products to the pressure of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:




Thus as
, the reaction will shift towards the right i.e. towards the product side.
Explanation:
Since, some of the given sample is stuck inside and behind the pipet. Hence, there will occur a decrease in the percent of acetic acid.
This is because a decrease in concentration of the acid will also lead to a decrease in the amount of sample taken for the estimation. Since. lesser is the amount or concentration present lesser will be its analyte concentration.
For example, we took 10 mg of a pickel sample but 3 mg of the sample remain stuck in the pipet. This means we actually titrating a sample less than 10 mg.
Therefore, the analyte concentration in the pickel will also be less.
Answer: Option (d) is the correct answer.
Explanation:
As it is known that like dissolves like. So, water being a polar compound is able to dissolve only polar compounds.
Hence, a compound that is ionic or polar in nature will readily dissolve in water. Whereas non-polar compounds will be insoluble in water.
As
is a non-polar compound. Hence, it is insoluble in water.
On the other hand,
is a polar compound due to difference in electronegativity of chlorine and carbon atom there will be development of partial charges. Hence, there will be dipole-dipole forces existing between them.
Whereas
is an ionic compound and it will readily dissociate into ions when dissolved in water. Also, there will be ion-dipole interactions between sodium and nitrate ions.
Hence,
will readily dissolve in water.
Thus, we can conclude that the compounds correctly arranged in order of increasing solubility in water are
<
<
.