One of the results is that the moon is near the earth and the other one, the oceans tide. Even though the earth can hold any object within
ts proximity, the ocean is partly attracted due to its liquid property. At night, the ocean tends to be attracted to the moon by creating a bulge and assigning it as ‘high tide’. This is due to the strong gravitational pull of th moon to the earth.
I hope this helps!
This might be right..
Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.
Answer:
Both require time, but velocity requires displacement and speed requires distance
Explanation:
For calculating speed we require time and distance because speed is defined as the distance per unit time and as speed is a scalar quantity it does not have any direction
But for calculating the velocity we require time as well as displacement because velocity is defined as the displacement per unit time and as velocity is a vector quantity it has direction
Displacement is the shortest distance between the initial position and the final position and it has a specified direction as well
Answer:
i think the answer is yess
Answer:
16.8 g of AgCl are produced
Explanation:
The reactants are: NaCl and AgNO₃
The products are: AgCl, NaNO₃
Balanced equation: NaCl(aq) + AgNO₃(aq) → NaNO₃(aq) + AgCl(s) ↓
We convert the mass of AgNO₃ to moles → 10 g / 85g/mol = 0.117 moles
Ratio is 1:1, therefore 0.117 moles of nitrate will produce 0.117 moles of AgCl.
According to stoichiormetry.
We convert the moles to mass → 0.117 mol . 143.3g /1mol = 16.8 g