Bitter, sour, salty, sweet.
pH=4.625
The classification of this sample of saliva : acid
<h3>Further explanation</h3>
The water equilibrium constant (Kw) is the product of concentration
the ions:
Kw = [H₃O⁺] [OH⁻]
Kw value at 25° C = 10⁻¹⁴
It is known [OH-] = 4.22 x 10⁻¹⁰ M
then the concentration of H₃O⁺:
![\tt 10^{-14}=4.22\times 10^{-10}\times [H_3O^+]\\\\(H_3O^+]=\dfrac{10^{-14}}{4.22\times 10^{-10}}=2.37\times 10^{-5}](https://tex.z-dn.net/?f=%5Ctt%2010%5E%7B-14%7D%3D4.22%5Ctimes%2010%5E%7B-10%7D%5Ctimes%20%5BH_3O%5E%2B%5D%5C%5C%5C%5C%28H_3O%5E%2B%5D%3D%5Cdfrac%7B10%5E%7B-14%7D%7D%7B4.22%5Ctimes%2010%5E%7B-10%7D%7D%3D2.37%5Ctimes%2010%5E%7B-5%7D)
pH=-log[H₃O⁺]
Saliva⇒acid(pH<7)
Answer:
Gram atomic mass of an element can be defined as the mass of one mole of atoms of a particular element. It is numerically equivalent to the value of the element's atomic mass unit but has its unit in grams.
Answer:
0.07 g/s.
Explanation:
From the question given above, the following data were obtained:
Mass lost = 9.85 g
Time taken = 2 min 30 s
Mean rate =?
Next, we shall convert 2 min 30 s to seconds (s). This can be obtained as follow:
1 min = 60 s
Thus,
2 min = 2 × 60 = 120 s
Therefore,
2 min 30 s = 120 s + 30 s = 150 s
Finally, we shall determine the mean rate of the reaction. This can be obtained as illustrated below:
Mass lost = 9.85 g
Time taken = 150 s
Mean rate =?
Mean rate = mass lost / time taken
Mean rate = 9.85 / 150
Mean rate = 0.07 g/s
Therefore, the mean rate of the reaction is 0.07 g/s