Answer:
Mole fraction H₂O → 0.72
Mole fraction C₂H₅OH → 0.28
Explanation:
By the mass of the two elements in the solution, we determine the moles of each:
25 g . 1 mol/ 18g = 1.39 moles of water (solute)
25 g . 1 mol / 46 g = 0.543 moles of ethanol (solvent)
Mole fraction solute = Moles of solute / Total moles
Mole fraction solvent = Moles of solvent / Total moles
Total moles = Moles of solute + Moles of solvent
1.39 moles of solute + 0.543 moles of solvent = 1.933 moles → Total moles
Mole fraction H₂O = 1.39 / 1.933 → 0.72
Mole fraction C₂H₅OH= 0.543 / 1.933 → 0.28
Remember that sum of mole fractions = 1
Answer:
see note under explanation
Explanation:
When describing system and surroundings the system is typically defined as the 'object of interest' being studied and surroundings 'everything else'. In thermodynamics heat flow is typically defined as endothermic or exothermic. However, one should realize that the terms endothermic and exothermic are in reference to the 'system' or object of interest being studied. For example if heat is transferred from a warm object to a cooler object it is imperative that the system be defined 1st. So, with that, assume the system is a warm metal cylinder being added into cooler water. When describing heat flow then the process is exothermic with respect to the metal cylinder (the system) but endothermic to the water and surroundings (everything else).
Answer:
not the best but that is alright
Explanation:
how is your day :)
Answer: 83.11 torr
Explanation:
According to Dalton's Law of partial pressure, the total pressure of a mixture of gases is the sum of the pressure of each individual gas.
i.e Ptotal = P1 + P2 + P3 + .......
In this case,
Ptotal = 384 torr
P1 = 289 torr
P2 = 11.89 torr
P3 = ? (let the partial pressure of the remaining gas be Z)
Ptotal = P1 + P2 + Z
384 torr = 289 torr + 11.89 torr + Z
384 torr = 300.89 torr + Z
Z = 384 torr - 300.89 torr
Z = 83.11 torr
Thus, the partial pressure of the remaining gas is 83.11 torr.
Answer:
A
Explanation:
The Charles law states that the volume of an ideal gas increases when temperature is increased under constant pressure. The pressure inside the balloon is always equal to the atmospheric pressure. Therefore answer A demonstrate the Charles law.