1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
11

It is 170 miles from Bruce’s house to the city where his brother lives. On his last trip to visit his brother, he drove for 2 ho

urs at 55 miles per hour. Then he came to some very bad road construction. The rest of the trip took 2 hours. How many miles per hour did Bruce drive for the rest of the trip?
Mathematics
2 answers:
Drupady [299]3 years ago
4 0
Hello,

Bruce drove 2 h at 55 mi/h ==>110 mi
The rest of the  trip (170mi-110mi=60mi) has been done in 2 h at speed of
60 mi/2h= 30 mi/h.
melomori [17]3 years ago
3 0
Bruce drove 30 miles per hour for the rest of the trip
You might be interested in
Find the distance between the points c ( 6, 5) and D(-3, 1),
svet-max [94.6K]

Answer:

see explanation

Step-by-step explanation:

Calculate the distance (d) using the distance formula

d = √ (x₂ - x₁ )² + (y₂ - y₁ )²

with (x₁, y₁ ) = (6, 5) and (x₂, y₂ ) = (- 3, 1)

d = \sqrt{(-3-6)^2+(1-5)^2}

  = \sqrt{(-9)^2+(-4)^2}

  = \sqrt{81+16}

  = \sqrt{97} ≈ 9.85 ( to 2 dec. places )

4 0
3 years ago
Suppose we have a right triangle with legs of length a and b and hypotenuse of length c. Suppose b=3 and c=5. Then a= , For the
ANTONII [103]

Answer:

Length of right-angle  triangle 'a' = 4

b)

<u><em></em></u>sin(A) = \frac{opposite side}{Hypotenuse} = \frac{a}{c} = \frac{4}{5}<u><em></em></u>

<u><em></em></u>cos(A) = \frac{Adjacent side}{Hypotenuse} = \frac{b}{c} = \frac{3}{5}<u><em></em></u>

<u><em></em></u>tan(A) = \frac{opposite side}{Adjacent side} = \frac{a}{b} = \frac{4}{3}<u><em></em></u>

Step-by-step explanation:

<u><em>Step(i):-</em></u>

Given  b = 3 and hypotenuse c = 5

Given ΔABC  is a right angle triangle

By using pythagoras theorem

        c² = a² + b²

  ⇒ a² = c² - b²

 ⇒  a² = 5²-3²

          =25 - 9

      a² = 16

⇒   a = √16 = 4

The sides of right angle triangle  a = 4 ,b = 3 and c = 5

<u><em>Step(ii):-</em></u>

<u><em></em></u>sin(A) = \frac{opposite side}{Hypotenuse} = \frac{a}{c} = \frac{4}{5}<u><em></em></u>

<u><em></em></u>cos(A) = \frac{Adjacent side}{Hypotenuse} = \frac{b}{c} = \frac{3}{5}<u><em></em></u>

<u><em></em></u>tan(A) = \frac{opposite side}{Adjacent side} = \frac{a}{b} = \frac{4}{3}<u><em></em></u>

7 0
2 years ago
The eatery restaurant has 200 tables. On a recent evening there were reservations for 1/10 of the tables. How many tables were r
lbvjy [14]
20 the answer for this is 20
3 0
3 years ago
Please prove this........​
Crazy boy [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π    →     C = π - (A + B)

                                    → sin C = sin(π - (A + B))       cos C = sin(π - (A + B))

                                    → sin C = sin (A + B)              cos C = - cos(A + B)

Use the following Sum to Product Identity:

sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]

cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]

Use the following Double Angle Identity:

sin 2A = 2 sin A · cos A

<u>Proof LHS → RHS</u>

LHS:                        (sin 2A + sin 2B) + sin 2C

\text{Sum to Product:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-\sin 2C

\text{Double Angle:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-2\sin C\cdot \cos C

\text{Simplify:}\qquad \qquad 2\sin (A + B)\cdot \cos (A - B)-2\sin C\cdot \cos C

\text{Given:}\qquad \qquad \quad 2\sin C\cdot \cos (A - B)+2\sin C\cdot \cos (A+B)

\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]

\text{Sum to Product:}\qquad 2\sin C\cdot 2\cos A\cdot \cos B

\text{Simplify:}\qquad \qquad 4\cos A\cdot \cos B \cdot \sin C

LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C    \checkmark

7 0
3 years ago
Square slabs of side 40 cm are to paved in a rectangular courtyard of length 24m and breadth 16 m. Find the number of slabs requ
34kurt

Answer:

2400 slabs. If this helps, please give brainliest!

6 0
3 years ago
Read 2 more answers
Other questions:
  • Horatio is purchasing a computer cable for $15.49.If the sales tax rate in his state is 5.25% what is the total cost of the purc
    10·1 answer
  • How do you write 416.7 in scientific notation? ___× 10^____
    15·2 answers
  • What's three equivalent ratios to 12/14
    12·2 answers
  • URGENT!! DUE TODAY PLEASE HELP!!! 15 POINTS
    5·1 answer
  • Here is the picture for this question
    10·2 answers
  • Which of the following graphs doesn't not represent a function
    8·2 answers
  • V=_mº
    15·2 answers
  • plz help and how to do this if u explain how to do this and tell me answer oi will give u brain thingy :D
    12·2 answers
  • Find the volume of the cylinder.
    7·1 answer
  • Can someone pls help me i don’t get this
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!